en Experimental Neurobiology

Cited by CrossRef (253)

  1. E. Srinivasan, G. Chandrasekhar, P. Chandrasekar, K. Anbarasu, A. S. Vickram, Rohini Karunakaran, R. Rajasekaran, P. S. Srikumar. Alpha-Synuclein Aggregation in Parkinson's Disease. Front. Med. 2021;8
    https://doi.org/10.3389/fmed.2021.736978
  2. Maria Regoni, Flavia Valtorta, Jenny Sassone. Dopaminergic neuronal death via necroptosis in Parkinson's disease: A review of the literature. Eur J of Neuroscience 2024;59:1079
    https://doi.org/10.1111/ejn.16136
  3. Olakunle J. Onaolapo, Ademola O. Odeniyi, Adejoke Y. Onaolapo. Parkinson’s Disease: Is there a Role for Dietary and Herbal Supplements?. CNSNDDT 2021;20:343
    https://doi.org/10.2174/1871527320666210218082954
  4. Madelyn M. Klemmensen, Seth H. Borrowman, Colin Pearce, Benjamin Pyles, Bharatendu Chandra. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024;21:e00292
    https://doi.org/10.1016/j.neurot.2023.10.002
  5. H. Khodadadi, G. P. Jahromi, G. Zaeinalifard, M. Fasihi-Ramandi, M. Esmaeili, A. Shahriary. Neuroprotective and Antiapoptotic Effects of Allopregnanolone and Curcumin on Arsenic-Induced Toxicity in SH-SY5Y Dopaminergic Human Neuroblastoma Cells. Neurophysiology 2020;52:124
    https://doi.org/10.1007/s11062-020-09861-6
  6. Mohana Devi Subramaniam, P. Aishwarya Janaki, B. Abishek Kumar, Janani Gopalarethinam, Aswathy P. Nair, I. Mahalaxmi, Balachandar Vellingiri. Retinal Changes in Parkinson’s Disease: A Non-invasive Biomarker for Early Diagnosis. Cell Mol Neurobiol 2023;43:3983
    https://doi.org/10.1007/s10571-023-01419-4
  7. Xin-Xin Cui, Xuan Li, Su-Yan Dong, Yan-Jie Guo, Te Liu, Yun-Cheng Wu. SIRT3 deacetylated and increased citrate synthase activity in PD model. Biochemical and Biophysical Research Communications 2017;484:767
    https://doi.org/10.1016/j.bbrc.2017.01.163
  8. V. H. Knaryan. Calpain Mediated Neurodegeneration in Parkinson’s disease. Neurochem. J. 2023;17:632
    https://doi.org/10.1134/S1819712423040116
  9. Veronica Fiorito, Deborah Chiabrando, Emanuela Tolosano. Mitochondrial Targeting in Neurodegeneration: A Heme Perspective. Pharmaceuticals 2018;11:87
    https://doi.org/10.3390/ph11030087
  10. Neha, Iqra Mazahir, Sara Akhtar Khan, Pooja Kaushik, Suhel Parvez. The Interplay of Mitochondrial Bioenergetics and Dopamine Agonists as an Effective Disease-Modifying Therapy for Parkinson’s Disease. Mol Neurobiol 2024
    https://doi.org/10.1007/s12035-024-04078-8
  11. Doaa Qubty, Kati Frid, Meirav Har-Even, Vardit Rubovitch, Ruth Gabizon, Chaim G Pick. Nano-PSO Administration Attenuates Cognitive and Neuronal Deficits Resulting from Traumatic Brain Injury. Molecules 2022;27:2725
    https://doi.org/10.3390/molecules27092725
  12. Nourhan Sayed, Alaa Emam Ali, Doaa Mokhtar Elsherbiny, Samar S. Azab. . 2022.
    https://doi.org/10.1007/7651_2024_516
  13. Anustup Bandyopadhyay, Abhijit Dey. Medicinal pteridophytes: ethnopharmacological, phytochemical, and clinical attributes. Beni-Suef Univ J Basic Appl Sci 2022;11
    https://doi.org/10.1186/s43088-022-00283-3
  14. Khairiah Razali, Mohd Hamzah Mohd Nasir, Jaya Kumar, Wael M. Y. Mohamed. Mitophagy: A Bridge Linking HMGB1 and Parkinson’s Disease Using Adult Zebrafish as a Model Organism. Brain Sciences 2023;13:1076
    https://doi.org/10.3390/brainsci13071076
  15. Younis Ahmad Hajam, Raksha Rani, Shahid Yousuf Ganie, Tariq Ahmad Sheikh, Darakhshan Javaid, Syed Sanober Qadri, Sreepoorna Pramodh, Ahmad Alsulimani, Mustfa F. Alkhanani, Steve Harakeh, Arif Hussain, Shafiul Haque, Mohd Salim Reshi. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022;11:552
    https://doi.org/10.3390/cells11030552
  16. Wilasinee Suwanjang, Kay L. H. Wu, Supaluk Prachayasittikul, Banthit Chetsawang, Komgrid Charngkaew. Mitochondrial Dynamics Impairment in Dexamethasone-Treated Neuronal Cells. Neurochem Res 2019;44:1567
    https://doi.org/10.1007/s11064-019-02779-4
  17. Jack J. Maran, Moradeke M. Adesina, Colin R. Green, Andrea Kwakowsky, Odunayo O. Mugisho. The central role of the NLRP3 inflammasome pathway in the pathogenesis of age-related diseases in the eye and the brain. Ageing Research Reviews 2023;88:101954
    https://doi.org/10.1016/j.arr.2023.101954
  18. Ruyi Zhang, Fangling Sun, Lan Zhang, Xuejing Sun, Lin Li. Tetrahydroxystilbene glucoside inhibits α-synuclein aggregation and apoptosis in A53T α-synuclein-transfected cells exposed to MPP+. Can. J. Physiol. Pharmacol. 2017;95:750
    https://doi.org/10.1139/cjpp-2016-0209
  19. Soumya Jacob P.. Bio-Inspired Algorithms and Devices for Treatment of Cognitive Diseases Using Future Technologies. 2017.
    https://doi.org/10.4018/978-1-7998-9534-3.ch006
  20. Medjda Bellamri, Kyle Brandt, Kari Cammerrer, Tauqeerunnisa Syeda, Robert J. Turesky, Jason R. Cannon. Nuclear DNA and Mitochondrial Damage of the Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in Human Neuroblastoma Cells. Chem. Res. Toxicol. 2023;36:1361
    https://doi.org/10.1021/acs.chemrestox.3c00109
  21. Nikhil Panicker, Tae-In Kam, Hu Wang, Stewart Neifert, Shih-Ching Chou, Manoj Kumar, Saurav Brahmachari, Aanishaa Jhaldiyal, Jared T. Hinkle, Fatih Akkentli, Xiaobo Mao, Enquan Xu, Senthilkumar S. Karuppagounder, Eric T. Hsu, Sung-Ung Kang, Olga Pletnikova, Juan Troncoso, Valina L. Dawson, Ted M. Dawson. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron 2022;110:2422
    https://doi.org/10.1016/j.neuron.2022.05.009
  22. Biswadeep Das, Pragyan Ray, Shradha Raut. Clinical Bioenergetics. 2022.
    https://doi.org/10.1016/B978-0-12-819621-2.00004-8
  23. Arpana Parihar, Nishant Kumar Choudhary, Raju Khan. Smart Diagnostics for Neurodegenerative Disorders. 2022.
    https://doi.org/10.1016/B978-0-323-95539-3.00006-5
  24. Fatemeh Zahedipour, SeyedeAtefe Hosseini, NeilC Henney, GeorgeE Barreto, Amirhossein Sahebkar. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen Res 2022;17:1675
    https://doi.org/10.4103/1673-5374.332128
  25. Oner Ulger, Gokhan Burcin Kubat. Therapeutic applications of mitochondrial transplantation. Biochimie 2022;195:1
    https://doi.org/10.1016/j.biochi.2022.01.002
  26. Lilian do Amaral, Neife Aparecida Guinaim dos Santos, Flávia Malvestio Sisti, Elaine Del Bel, Antônio Cardozo dos Santos. Doxycycline inhibits dopaminergic neurodegeneration through upregulation of axonal and synaptic proteins. Naunyn-Schmiedeberg's Arch Pharmacol 2023;396:1787
    https://doi.org/10.1007/s00210-023-02435-3
  27. Ji-Hyun Park, Kazuhide Hayakawa. Extracellular Mitochondria Signals in CNS Disorders. Front. Cell Dev. Biol. 2021;9
    https://doi.org/10.3389/fcell.2021.642853
  28. Valery Danilenko, Andrey Devyatkin, Mariya Marsova, Madina Shibilova, Rustem Ilyasov, Vladimir Shmyrev. Common Inflammatory Mechanisms in COVID-19 and Parkinson’s Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. JIR 2021;Volume 14:6349
    https://doi.org/10.2147/JIR.S333887
  29. Alastair Noyce, Rina Bandopadhyay. Neurodegenerative Diseases. 2021.
    https://doi.org/10.1007/978-3-319-57193-5_3
  30. Ying Zhang, Nanqu Huang, Mingji Chen, Hai Jin, Jing Nie, Jingshan Shi, Feng Jin. Procyanidin protects against 6-hydroxydopamine-induced dopaminergic neuron damage via the regulation of the PI3K/Akt signalling pathway. Biomedicine & Pharmacotherapy 2019;114:108789
    https://doi.org/10.1016/j.biopha.2019.108789
  31. Longgang Jia, Ying Wang, Jingcheng Sang, Wei Cui, Wenping Zhao, Wei Wei, Beibei Chen, Fuping Lu, Fufeng Liu. Dihydromyricetin Inhibits α-Synuclein Aggregation, Disrupts Preformed Fibrils, and Protects Neuronal Cells in Culture against Amyloid-Induced Cytotoxicity. J. Agric. Food Chem. 2019;67:3946
    https://doi.org/10.1021/acs.jafc.9b00922
  32. Ping Gong, Fang Deng, Wei Zhang, Jin Ji, Jia Liu, Yinan Sun, Jiayu Hu. Tectorigenin attenuates the MPP+‑induced SH‑SY5Y cell damage, indicating a potential beneficial role in Parkinson's disease by oxidative stress inhibition. Exp Ther Med 2017
    https://doi.org/10.3892/etm.2017.5049
  33. Eun-Hye Lee, Minkyung Kim, Seung Hwan Ko, Chun-Hyung Kim, Minhyung Lee, Chang-Hwan Park. Primary astrocytic mitochondrial transplantation ameliorates ischemic stroke. BMB Rep 2023;56:90
    https://doi.org/10.5483/BMBRep.2022-0108
  34. Lianteng Zhi, Qi Qin, Tanziyah Muqeem, Erin L. Seifert, Wencheng Liu, Sushuang Zheng, Chenjian Li, Hui Zhang. Loss of PINK1 causes age-dependent decrease of dopamine release and mitochondrial dysfunction. Neurobiology of Aging 2019;75:1
    https://doi.org/10.1016/j.neurobiolaging.2018.10.025
  35. Carla Ribeiro Alvares Batista, Giovanni Freitas Gomes, Eduardo Candelario-Jalil, Bernd L. Fiebich, Antonio Carlos Pinheiro de Oliveira. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. IJMS 2019;20:2293
    https://doi.org/10.3390/ijms20092293
  36. Sadegh Moradi Vastegani, Ava Nasrolahi, Shahab Ghaderi, Rafie Belali, Masome Rashno, Maryam Farzaneh, Seyed Esmaeil Khoshnam. Mitochondrial Dysfunction and Parkinson’s Disease: Pathogenesis and Therapeutic Strategies. Neurochem Res 2023;48:2285
    https://doi.org/10.1007/s11064-023-03904-0
  37. Debdarshan Dutta, Dipti Tripathi, Prakhar Asthana, Kratik Rana, Nami Jain, Radhika Sharma, Urshila Naithani, Devatman Jauhari, Rachana. Capsaicinoids. 2023.
    https://doi.org/10.1007/978-981-99-7779-6_23
  38. Mikah S. Brandes, Nora E. Gray. NRF2 as a Therapeutic Target in Neurodegenerative Diseases. ASN Neuro 2020;12:175909141989978
    https://doi.org/10.1177/1759091419899782
  39. Heng-Chung Kung, Kai-Jung Lin, Chia-Te Kung, Tsu-Kung Lin. Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson’s Disease. Biomedicines 2021;9:918
    https://doi.org/10.3390/biomedicines9080918
  40. Ramya Kuber Banoth. ANTI-PARKINSONIAN ACTIVITY OF VARIOUS SOLVENT EXTRACTS OF CLEOME GYNANDRA LEAVES AGAINST MPTP AND ISOLATION OF PHYTOCONSTITUENTS. IND. DRU. 2021;58:24
    https://doi.org/10.53879/id.58.08.12247
  41. Marjan Talebi, Mohsen Talebi, Eleni Kakouri, Tahereh Farkhondeh, Ali Mohammad Pourbagher-Shahri, Petros A. Tarantilis, Saeed Samarghandian. Tantalizing role of p53 molecular pathways and its coherent medications in neurodegenerative diseases. International Journal of Biological Macromolecules 2021;172:93
    https://doi.org/10.1016/j.ijbiomac.2021.01.042
  42. Youcef Mehellou. Parkinson’s Disease: Are PINK1 Activators Inching Closer to the Clinic?. ACS Med. Chem. Lett. 2023;14:870
    https://doi.org/10.1021/acsmedchemlett.3c00070
  43. Ana Mafalda Gonçalves, Ana Raquel Pereira-Santos, Ana Raquel Esteves, Sandra M. Cardoso, Nuno Empadinhas. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease. Antioxidants & Redox Signaling 2021;34:694
    https://doi.org/10.1089/ars.2019.7997
  44. E. Maruthi Prasad, Shih-Ya Hung. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson’s Disease. Antioxidants 2020;9:1007
    https://doi.org/10.3390/antiox9101007
  45. Yuyang Sun, Viviane Nascimento Da Conceicao, Naseem Ahamad, Muniswamy Madesh, Brij B Singh. Spatial localization of SOCE channels and its modulators regulate neuronal physiology and contributes to pathology. Current Opinion in Physiology 2020;17:50
    https://doi.org/10.1016/j.cophys.2020.07.008
  46. Huihui Zhang, Xiaojiao Zhu, Hong Li, Gang Liu, Junjun Wang, Aidong Wang, Lin Kong, Weiju Zhu, Hongping Zhou. A RNA-Targeted Two-Photon Bioprobe with High Selective Permeability into Nuclear Pore Complexes for Dynamically Tracking the Autophagy Process among Multi-Organelles. Anal. Chem. 2019;91:14911
    https://doi.org/10.1021/acs.analchem.9b03009
  47. Md. Habibur Rahman, Johny Bajgai, Ailyn Fadriquela, Subham Sharma, Thuy Thi Trinh, Rokeya Akter, Yun Ju Jeong, Seong Hoon Goh, Cheol-Su Kim, Kyu-Jae Lee. Therapeutic Potential of Natural Products in Treating Neurodegenerative Disorders and Their Future Prospects and Challenges. Molecules 2021;26:5327
    https://doi.org/10.3390/molecules26175327
  48. Shipra Kartik, Rishi Pal, Manju J. Chaudhary, Rajendra Nath, Madhu Kumar, Monika Binwal, D. U. Bawankule. Neuroprotective role of chloroquine via modulation of autophagy and neuroinflammation in MPTP-induced Parkinson’s disease. Inflammopharmacol 2023;31:927
    https://doi.org/10.1007/s10787-023-01141-z
  49. Karamkolly R. Rekha, Ramu Inmozhi Sivakamasundari. Geraniol Protects Against the Protein and Oxidative Stress Induced by Rotenone in an In Vitro Model of Parkinson’s Disease. Neurochem Res 2018;43:1947
    https://doi.org/10.1007/s11064-018-2617-5
  50. Rohit Bhatt, Devendra Vaishnav, Vishal Airao, Tejas Sharma, Mahesh Rachamalla, Shalini Mani, Ashish Kumar Gupta, Vijay Upadhye, Saurabh Kumar Jha, Niraj Kumar Jha, Sachin Parmar. Neuroprotective potential of saroglitazar in 6‐OHDA induced Parkinson's disease in rats. Chem Biol Drug Des 2023;102:955
    https://doi.org/10.1111/cbdd.14306
  51. Jayanth Anantha, Fionnuala E. Wilson, Erin McCarthy, Noelia Morales-Prieto, Martina Mazzocchi, Louise M. Collins, Aideen M. Sullivan, Gerard W. O’Keeffe. A combined proteomics and bioinformatics analysis of ZNHIT1-interacting proteins reveals a significant enrichment in proteins associated with mitochondrial function. Journal of Chemical Neuroanatomy 2023;131:102288
    https://doi.org/10.1016/j.jchemneu.2023.102288
  52. Wenxuan Yang, Satoshi Abe, Yasuhiko Tabata. Association with cationized gelatin nanospheres enhances cell internalization of mitochondria efficiency. Regenerative Therapy 2023;24:190
    https://doi.org/10.1016/j.reth.2023.06.011
  53. María Gómez-Serrano, Emilio Camafeita, Marta Loureiro, Belén Peral. Mitoproteomics: Tackling Mitochondrial Dysfunction in Human Disease. Oxidative Medicine and Cellular Longevity 2018;2018:1
    https://doi.org/10.1155/2018/1435934
  54. Iosif Pediaditakis, Konstantia R. Kodella, Dimitris V. Manatakis, Christopher Y. Le, Chris D. Hinojosa, William Tien-Street, Elias S. Manolakos, Kostas Vekrellis, Geraldine A. Hamilton, Lorna Ewart, Lee L. Rubin, Katia Karalis. Modeling alpha-synuclein pathology in a human brain-chip to assess blood-brain barrier disruption. Nat Commun 2021;12
    https://doi.org/10.1038/s41467-021-26066-5
  55. Dona P.W. Jayatunga, Eugene Hone, Prashant Bharadwaj, Manohar Garg, Giuseppe Verdile, Gilles J. Guillemin, Ralph N. Martins. Targeting Mitophagy in Alzheimer’s Disease. JAD 2020;78:1273
    https://doi.org/10.3233/JAD-191258
  56. Lior Nechushtai, Dan Frenkel, Ronit Pinkas-Kramarski. Autophagy in Parkinson’s Disease. Biomolecules 2023;13:1435
    https://doi.org/10.3390/biom13101435
  57. Sarah Brandl, Markus Reindl. Blood–Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. IJMS 2023;24:12699
    https://doi.org/10.3390/ijms241612699
  58. Sean Hong Tan, Venkatanaidu Karri, Nicole Wuen Rong Tay, Kuan Hui Chang, Hui Yen Ah, Phui Qi Ng, Hui San Ho, Hsiao Wai Keh, Mayuren Candasamy. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomedicine & Pharmacotherapy 2019;111:765
    https://doi.org/10.1016/j.biopha.2018.12.101
  59. Fatemeh Saadatpour, Fatemeh Mohammadipanah, Nazanin Zohourian, Mahshid Hodjat. Potential of nanoparticles and nanopolymers in treatment of age-associated diseases. Adv. Nat. Sci: Nanosci. Nanotechnol. 2021;12:045008
    https://doi.org/10.1088/2043-6262/ac42c7
  60. Lakshmi Chavali, Ingeborg Yddal, Ersilia Bifulco, Simen Mannsåker, Dagne Røise, Jack Law, Ann-Kristin Frøyset, Sushma Grellscheid, Kari Fladmark. Progressive Motor and Non-Motor Symptoms in Park7 Knockout Zebrafish. IJMS 2023;24:6456
    https://doi.org/10.3390/ijms24076456
  61. Pramod Sukumaran, Yuyang Sun, Anne Schaar, Senthil Selvaraj, Brij B. Singh. Transient Receptor Potential Canonical Channels and Brain Diseases. 2023.
    https://doi.org/10.1007/978-94-024-1088-4_8
  62. Ishnoor Kaur, Tapan Behl, Aayush Sehgal, Sukhbir Singh, Neelam Sharma, Lotfi Aleya, Simona Bungau. Connecting the dots between mitochondrial dysfunction and Parkinson’s disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. Environ Sci Pollut Res 2021;28:37060
    https://doi.org/10.1007/s11356-021-14619-6
  63. Nannan Yang, Yang Wei, Tan Wang, Jifeng Guo, Qiying Sun, Yacen Hu, Xinxiang Yan, Xiongwei Zhu, Beisha Tang, Qian Xu. Genome-wide analysis of DNA methylation during antagonism of DMOG to MnCl2-induced cytotoxicity in the mouse substantia nigra. Sci Rep 2016;6
    https://doi.org/10.1038/srep28933
  64. Bor Luen Tang. Sirtuins as modifiers of Parkinson's disease pathology. J of Neuroscience Research 2017;95:930
    https://doi.org/10.1002/jnr.23806
  65. Peizhou Jiang, Dennis W. Dickson. Parkinson’s disease: experimental models and reality. Acta Neuropathol 2018;135:13
    https://doi.org/10.1007/s00401-017-1788-5
  66. Priya Tyagi, Mohd Tasleem, Shweta Prakash, Garima Chouhan. Intermingling of gut microbiota with brain: Exploring the role of probiotics in battle against depressive disorders. Food Research International 2020;137:109489
    https://doi.org/10.1016/j.foodres.2020.109489
  67. Sujay Guha, Neal D Mathew, Chigoziri Konkwo, Julian Ostrovsky, Young Joon Kwon, Erzsebet Polyak, Christoph Seiler, Michael Bennett, Rui Xiao, Zhe Zhang, Eiko Nakamaru-Ogiso, Marni J Falk. Combinatorial glucose, nicotinic acid and N-acetylcysteine therapy has synergistic effect in preclinicalC. elegansand zebrafish models of mitochondrial complex I disease. 2021;30:536
    https://doi.org/10.1093/hmg/ddab059
  68. Ludmila Araújo de Lima, Pedro Lourenzo Oliveira Cunha, Iana Bantim Felicio Calou, Kelly Rose Tavares Neves, Heberty Tarso Facundo, Glauce Socorro de Barros Viana. Effects of vitamin D (VD3) supplementation on the brain mitochondrial function of male rats, in the 6-OHDA-induced model of Parkinson's disease. Neurochemistry International 2022;154:105280
    https://doi.org/10.1016/j.neuint.2022.105280
  69. Heping Wang, Xi Chen, Mingxing Mao, Xue Xue. Multifaceted Therapy of Nanocatalysts in Neurological Diseases. j biomed nanotechnol 2021;17:711
    https://doi.org/10.1166/jbn.2021.3063
  70. Heather Wilson, Alana Terry, Marios Politis. Neuroimaging in Parkinson�s Disease and Related Disorders. 2021.
    https://doi.org/10.1016/B978-0-12-821651-4.00002-6
  71. Inam Ullah, Shahab Uddin, Longhe Zhao, Xin Wang, Hongyu Li. Autophagy and UPS pathway contribute to nicotine-induced protection effect in Parkinson’s disease. Exp Brain Res 2024;242:971
    https://doi.org/10.1007/s00221-023-06765-9
  72. Mahdi Gholipour, Kasra Honarmand Tamizkar, Amirhossein Niknam, Bashdar Mahmud Hussen, Solat Eslami, Arezou Sayad, Soudeh Ghafouri-Fard. Expression analysis of vitamin D receptor and its related long non-coding RNAs in peripheral blood of patients with Parkinson's disease. Mol Biol Rep 2022;49:5911
    https://doi.org/10.1007/s11033-022-07372-7
  73. Mariana Oliveira Mendes, Alexandra Isabel Rosa, Andreia Neves Carvalho, Maria João Nunes, Pedro Dionísio, Elsa Rodrigues, Daniela Costa, Sara Duarte-Silva, Patrícia Maciel, Cecília Maria Pereira Rodrigues, Maria João Gama, Margarida Castro-Caldas. Neurotoxic effects of MPTP on mouse cerebral cortex: Modulation of neuroinflammation as a neuroprotective strategy. Molecular and Cellular Neuroscience 2019;96:1
    https://doi.org/10.1016/j.mcn.2019.01.003
  74. Rita Perfeito, Márcio Ribeiro, A. Cristina Rego. Alpha-synuclein-induced oxidative stress correlates with altered superoxide dismutase and glutathione synthesis in human neuroblastoma SH-SY5Y cells. Arch Toxicol 2017;91:1245
    https://doi.org/10.1007/s00204-016-1788-6
  75. Dharmendra K. Khatri, Archana R. Juvekar. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson's disease. Pharmacology Biochemistry and Behavior 2016;150-151:39
    https://doi.org/10.1016/j.pbb.2016.09.002
  76. Xianxun Shi, Ming Zhao, Chen Fu, Ailing Fu. Intravenous administration of mitochondria for treating experimental Parkinson's disease. Mitochondrion 2017;34:91
    https://doi.org/10.1016/j.mito.2017.02.005
  77. Hirohisa Watanabe, Johannes M. Dijkstra, Toshiharu Nagatsu. Parkinson’s Disease: Cells Succumbing to Lifelong Dopamine-Related Oxidative Stress and Other Bioenergetic Challenges. IJMS 2024;25:2009
    https://doi.org/10.3390/ijms25042009
  78. Matteo Guidetti, Alessandro Bertini, Francesco Pirone, Gessica Sala, Paola Signorelli, Carlo Ferrarese, Alberto Priori, Tommaso Bocci. Neuroprotection and Non-Invasive Brain Stimulation: Facts or Fiction?. IJMS 2022;23:13775
    https://doi.org/10.3390/ijms232213775
  79. L.C. Lew, Y.Y. Hor, M.H. Jaafar, A.S.Y. Lau, J.S. Ong, L.O. Chuah, K.P. Yap, G. Azzam, A. Azlan, M.T. Liong. Lactobacilli modulated AMPK activity and prevented telomere shortening in ageing rats. BM 2019;10:883
    https://doi.org/10.3920/BM2019.0058
  80. Tao Long, Qian Wu, Jing Wei, Yong Tang, Yan-Ni He, Chang-Long He, Xue Chen, Lu Yu, Chong-Lin Yu, Betty Yuen-Kwan Law, Jian-Ming Wu, Da-Lian Qin, An-Guo Wu, Xiao-Gang Zhou, Xinfeng Li. Ferulic Acid Exerts Neuroprotective Effects via Autophagy Induction in C. elegans and Cellular Models of Parkinson’s Disease. Oxidative Medicine and Cellular Longevity 2022;2022:1
    https://doi.org/10.1155/2022/3723567
  81. Junyu Dong, Quan Quan, Di Zhao, Changchao Li, Chao Zhang, Hao Chen, Jiaohui Fang, Lifei Wang, Jian Liu. A combined method for the source apportionment of sediment organic carbon in rivers. Science of The Total Environment 2021;752:141840
    https://doi.org/10.1016/j.scitotenv.2020.141840
  82. Nagalakshmi B., Sneha Sagarkar, Amul J. Sakharkar. Epigenetics and Psychiatric Disease. 2021.
    https://doi.org/10.1016/bs.pmbts.2017.12.013
  83. Giovanni Schepici, Serena Silvestro, Placido Bramanti, Emanuela Mazzon. Caffeine: An Overview of Its Beneficial Effects in Experimental Models and Clinical Trials of Parkinson’s Disease. IJMS 2020;21:4766
    https://doi.org/10.3390/ijms21134766
  84. Zahra Shahpiri, Roodabeh Bahramsoltani, Mohammad Hosein Farzaei, Fatemeh Farzaei, Roja Rahimi. Phytochemicals as future drugs for Parkinson’s disease: a comprehensive review. 2016;27:651
    https://doi.org/10.1515/revneuro-2016-0004
  85. Caterina Peggion, Tito Calì, Marisa Brini. Mitochondria Dysfunction and Neuroinflammation in Neurodegeneration: Who Comes First?. Antioxidants 2024;13:240
    https://doi.org/10.3390/antiox13020240
  86. Silvia Bolognin, Marie Fossépré, Xiaobing Qing, Javier Jarazo, Janez Ščančar, Edinson Lucumi Moreno, Sarah L. Nickels, Kobi Wasner, Nassima Ouzren, Jonas Walter, Anne Grünewald, Enrico Glaab, Luis Salamanca, Ronan M. T. Fleming, Paul M. A. Antony, Jens C. Schwamborn. 3D Cultures of Parkinson's Disease‐Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing. Advanced Science 2019;6
    https://doi.org/10.1002/advs.201800927
  87. Jyotsna Shankar, Geetha K.M, Barnabas Wilson. Potential applications of nanomedicine for treating Parkinson's disease. Journal of Drug Delivery Science and Technology 2021;66:102793
    https://doi.org/10.1016/j.jddst.2021.102793
  88. Martin D. Brand. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radical Biology and Medicine 2016;100:14
    https://doi.org/10.1016/j.freeradbiomed.2016.04.001
  89. Megala Jayaraman, Parijat Dutta, Sabari Krishnan, Khyati Arora, Diveyaa Sivakumar, Hanumanth Rao Balaji Raghavendran. Emerging Promise of Phytochemicals in Ameliorating Neurological Disorders. CNSNDDT 2023;22:1275
    https://doi.org/10.2174/1871527321666220701153926
  90. Jin Hwan Do. Apomorphine-induced pathway perturbation in MPP+-treated SH-SY5Y cells. 2017;4:271
    https://doi.org/10.3934/molsci.2017.3.271
  91. Mingyang Zhang, Haiyan Shan, Pan Chang, Lu Ma, Yang Chu, Xi Shen, Qiong Wu, Zufeng Wang, Chengliang Luo, Tao Wang, Xiping Chen, Luyang Tao. Upregulation of 3-MST Relates to Neuronal Autophagy After Traumatic Brain Injury in Mice. Cell Mol Neurobiol 2017;37:291
    https://doi.org/10.1007/s10571-016-0369-9
  92. Hui Zhang, Peng Yu, Ji-Xia Ren, Xi-Bo Li, He-Li Wang, Lan Ding, Wei-Bao Kong. Development of novel prediction model for drug-induced mitochondrial toxicity by using naïve Bayes classifier method. Food and Chemical Toxicology 2017;110:122
    https://doi.org/10.1016/j.fct.2017.10.021
  93. Saumitra Sen Singh, Sachchida Nand Rai, Hareram Birla, Walia Zahra, Aaina Singh Rathore, Hagera Dilnashin, Richa Singh, Surya Pratap Singh. Neuroprotective Effect of Chlorogenic Acid on Mitochondrial Dysfunction-Mediated Apoptotic Death of DA Neurons in a Parkinsonian Mouse Model. Oxidative Medicine and Cellular Longevity 2020;2020:1
    https://doi.org/10.1155/2020/6571484
  94. Altaf S. Darvesh, McKenna McClure, Prabodh Sadana, Chris Paxos, Werner J. Geldenhuys, Joshua D. Lambert, Tariq M. Haqqi, Jason R. Richardson. Neuroprotective Effects of Phytochemicals in Neurological Disorders. 2020.
    https://doi.org/10.1002/9781119155195.ch11
  95. Jaison Daniel Cucarián Hurtado, Jenny Paola Berrío Sánchez, Ramiro Barcos Nunes, Alcyr Alves de Oliveira. Stem Cell Transplantation and Physical Exercise in Parkinson’s Disease, a Literature Review of Human and Animal Studies. Stem Cell Rev and Rep 2018;14:166
    https://doi.org/10.1007/s12015-017-9798-1
  96. Xiao‑Liang Liu, Ying‑Di Wang, Xiu‑Ming Yu, Da‑Wei Li, Guang‑Ren Li. Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review). Int J Mol Med 2017
    https://doi.org/10.3892/ijmm.2017.3255
  97. Jinli Lu, Shuhua Chen, Mi Shen, Qianru He, Yu Zhang, Yue Shi, Fei Ding, Qi Zhang. Mitochondrial regulation by pyrroloquinoline quinone prevents rotenone-induced neurotoxicity in Parkinson’s disease models. Neuroscience Letters 2018;687:104
    https://doi.org/10.1016/j.neulet.2018.09.031
  98. Chao Wang, Thanh Nguyen, Xinzhou Yang, George D. Mellick, Yunjiang Feng. Phytochemical investigation of Asarum sieboldii var. seoulense and the phenotypic profiles of its constituents against a Parkinson’s Disease olfactory cell line. Bioorganic & Medicinal Chemistry Letters 2023;92:129386
    https://doi.org/10.1016/j.bmcl.2023.129386
  99. Geon Ha Kim, Jieun E. Kim, Sandy Jeong Rhie, Sujung Yoon. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp Neurobiol 2015;24:325
    https://doi.org/10.5607/en.2015.24.4.325
  100. Nour S. Erekat. Parkinson’s Disease: Pathogenesis and Clinical Aspects . 2015.
    https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch4
  101. Gina Cavaliere, Fabiano Cimmino, Giovanna Trinchese, Angela Catapano, Lidia Petrella, Margherita D’Angelo, Lucio Lucchin, Maria Pina Mollica. From Obesity-Induced Low-Grade Inflammation to Lipotoxicity and Mitochondrial Dysfunction: Altered Multi-Crosstalk between Adipose Tissue and Metabolically Active Organs. Antioxidants 2023;12:1172
    https://doi.org/10.3390/antiox12061172
  102. Daniël H. Swart, Martin de Haan, Jasper Stevens, Rob H. Henning, Sovan Adel, Adrianus C. van der Graaf, Nadir Ulu, Daan J. Touw, Guido Krenning. Safety, tolerability and toxicokinetics of the novel mitochondrial drug SUL-138 administered orally to rat and minipig. Toxicology Reports 2024;12:345
    https://doi.org/10.1016/j.toxrep.2024.03.009
  103. Joanna A Korecka, Ria Thomas, Dan P Christensen, Anthony J Hinrich, Eliza J Ferrari, Simon A Levy, Michelle L Hastings, Penelope J Hallett, Ole Isacson. Mitochondrial clearance and maturation of autophagosomes are compromised in LRRK2 G2019S familial Parkinson’s disease patient fibroblasts. 2019;28:3232
    https://doi.org/10.1093/hmg/ddz126
  104. Britney N. Lizama, Amy M. Palubinsky, BethAnn McLaughlin. Alterations in the E3 ligases Parkin and CHIP result in unique metabolic signaling defects and mitochondrial quality control issues. Neurochemistry International 2018;117:139
    https://doi.org/10.1016/j.neuint.2017.08.013
  105. Hiroshi Nishiwaki, Tomonari Hamaguchi, Mikako Ito, Tomohiro Ishida, Tetsuya Maeda, Kenichi Kashihara, Yoshio Tsuboi, Jun Ueyama, Teppei Shimamura, Hiroshi Mori, Ken Kurokawa, Masahisa Katsuno, Masaaki Hirayama, Kinji Ohno, Chaysavanh Manichanh. Short-Chain Fatty Acid-Producing Gut Microbiota Is Decreased in Parkinson’s Disease but Not in Rapid-Eye-Movement Sleep Behavior Disorder. mSystems 2020;5
    https://doi.org/10.1128/mSystems.00797-20
  106. Jinhua Xue, Yanning Li, Yue Qi, Ziwei Zhang, Xiaolu Tang. Exogenous Otx2 protects midbrain dopaminergic neurons from MPP+ by interacting with ATP5a1 and promoting ATP synthesis. NeuroToxicology 2022;91:211
    https://doi.org/10.1016/j.neuro.2022.05.013
  107. Adriana Morales-Martínez, Paola A. Martínez-Gómez, Daniel Martinez-Fong, Marcos M. Villegas-Rojas, Francisca Pérez-Severiano, Miguel A. Del Toro-Colín, Karen M. Delgado-Minjares, Víctor Manuel Blanco-Alvarez, Bertha Alicia Leon-Chavez, Omar Emiliano Aparicio-Trejo, Mauricio T. Baéz-Cortés, Maria-del-Carmen Cardenas-Aguayo, José Luna-Muñoz, Mar Pacheco-Herrero, Quetzalli D. Angeles-López, Irma A. Martínez-Dávila, Citlaltepetl Salinas-Lara, José Pablo Romero-López, Carlos Sánchez-Garibay, Adolfo R. Méndez-Cruz, Luis O. Soto-Rojas. Oxidative Stress and Mitochondrial Complex I Dysfunction Correlate with Neurodegeneration in an α-Synucleinopathy Animal Model. IJMS 2022;23:11394
    https://doi.org/10.3390/ijms231911394
  108. Sri Jayanti, Rita Moretti, Claudio Tiribelli, Silvia Gazzin. Bilirubin: A Promising Therapy for Parkinson’s Disease. IJMS 2021;22:6223
    https://doi.org/10.3390/ijms22126223
  109. Nazrana Payal, Lalit Sharma, Aditi Sharma, Yahya Hosan Hobanii, Mashael Ahmed Hakami, Nemat Ali, Summya Rashid, Monika Sachdeva, Monica Gulati, Shivam Yadav, Sridevi Chigurupati, Abhiav Singh, Haroon Khan, Tapan Behl. Understanding the Therapeutic Approaches for Neuroprotection. CPD 2023;29:3368
    https://doi.org/10.2174/0113816128275761231103102125
  110. Karthikeyan Harimoorthy, Menakadevi Thangavelu. Cloud‐assisted Parkinson disease identification system for remote patient monitoring and diagnosis in the smart healthcare applications. Concurrency and Computation 2021;33
    https://doi.org/10.1002/cpe.6419
  111. Alexandre Iarkov, George E. Barreto, J. Alex Grizzell, Valentina Echeverria. Strategies for the Treatment of Parkinson’s Disease: Beyond Dopamine. Front. Aging Neurosci. 2020;12
    https://doi.org/10.3389/fnagi.2020.00004
  112. David Alsina, Oleksandr Lytovchenko, Aleksandra Schab, Ilian Atanassov, Florian A Schober, Min Jiang, Camilla Koolmeister, Anna Wedell, Robert W Taylor, Anna Wredenberg, Nils‐Göran Larsson. FBXL 4 deficiency increases mitochondrial removal by autophagy . EMBO Mol Med 2020;12
    https://doi.org/10.15252/emmm.201911659
  113. Shih-Wei Lai, Cheng-Li Lin, Kuan-Fu Liao. Glaucoma correlates with increased risk of Parkinson’s disease in the elderly: a national-based cohort study in Taiwan. Current Medical Research and Opinion 2017;33:1511
    https://doi.org/10.1080/03007995.2017.1322570
  114. Li Lei, Qixiong Lu, Guifang Ma, Tao Li, Jiahong Deng, Weijia Li. P53 protein and the diseases in central nervous system. Front. Genet. 2023;13
    https://doi.org/10.3389/fgene.2022.1051395
  115. M. Niu, R. Xu, J. Wang, B. Hou, A. Xie. MiR-133b ameliorates axon degeneration induced by MPP+ via targeting RhoA. Neuroscience 2016;325:39
    https://doi.org/10.1016/j.neuroscience.2016.03.042
  116. Kamatham Pushpa Tryphena, Urati Anuradha, Rohith Kumar, Shruti Rajan, Saurabh Srivastava, Shashi Bala Singh, Dharmendra Kumar Khatri, KS Jagannatha Rao, Lezanne Ooi, Muralidhar L. Hegde, Yan Zhang, Nancy Y. Ip, Mohammad Nami, Mikko Hiltunen, John Jia En Chua, Cecilia Bouzat, Samuel J.K. Abraham. Understanding the Involvement of microRNAs in Mitochondrial Dysfunction and Their Role as Potential Biomarkers and Therapeutic Targets in Parkinson’s Disease. JAD 2023;94:S187
    https://doi.org/10.3233/JAD-220449
  117. Shokufeh Bagheri, Iraj Salehi, Fatemeh Ramezani-Aliakbari, Masoumeh Kourosh-Arami, Alireza Komaki. Neuroprotective effect of geraniol on neurological disorders: a review article. Mol Biol Rep 2022;49:10865
    https://doi.org/10.1007/s11033-022-07755-w
  118. Md Zeeshan Rasheed, Heena Tabassum, Suhel Parvez. Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson’s disease. Protoplasma 2017;254:33
    https://doi.org/10.1007/s00709-015-0930-2
  119. Mohammad Sarukhani, Hashem Haghdoost-Yazdi, Ali Sarbazi Golezari, Arvin Babayan-Tazehkand, Tahere Dargahi, Nafiseh Rastgoo. Evaluation of the antiparkinsonism and neuroprotective effects of hydrogen sulfide in acute 6-hydroxydopamine-induced animal model of Parkinson’s disease: behavioral, histological and biochemical studies. Neurological Research 2018;40:525
    https://doi.org/10.1080/01616412.2017.1390903
  120. Walia Zahra, Hareram Birla, Saumitra Sen Singh, Aaina Singh Rathore, Hagera Dilnashin, Richa Singh, Priyanka Kumari Keshri, Shekhar Singh, Surya Pratap Singh. Anti-Parkinsonian effect of Mucuna pruriens and Ursolic acid on GSK3β/Calcium signaling in neuroprotection against Rotenone-induced Parkinsonism. Phytomedicine Plus 2022;2:100343
    https://doi.org/10.1016/j.phyplu.2022.100343
  121. Andrea Herrera, Patricia Muñoz, Harry W. M. Steinbusch, Juan Segura-Aguilar. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson’s Disease?. ACS Chem. Neurosci. 2017;8:702
    https://doi.org/10.1021/acschemneuro.7b00034
  122. Xiaoxiao Wang, Bolun Wang, Fenfen Ji, Jie Yan, Jiacheng Fang, Doudou Zhang, Ji Xu, Jing Ji, Xinran Hao, Hemi Luan, Yanjun Hong, Shulan Qiu, Min Li, Zhu Yang, Wenlan Liu, Xiaodong Cai, Zongwei Cai. Discovery of plasma biomarkers for Parkinson's disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters 2024:109653
    https://doi.org/10.1016/j.cclet.2024.109653
  123. D. F. Sharrad, B. N. Chen, W. P. Gai, N. Vaikath, O. M. El‐Agnaf, S. J. H. Brookes. Rotenone and elevated extracellular potassium concentration induce cell‐specific fibrillation of α‐synuclein in axons of cholinergic enteric neurons in the guinea‐pig ileum. Neurogastroenterology Motil 2017;29
    https://doi.org/10.1111/nmo.12985
  124. Maryann N. Krasko, John Szot, Karolina Lungova, Linda M. Rowe, Glen Leverson, Cynthia A. Kelm-Nelson, Michelle R. Ciucci. Pink1-/- Rats Demonstrate Swallowing and Gastrointestinal Dysfunction in a Model of Prodromal Parkinson Disease. Dysphagia 2023;38:1382
    https://doi.org/10.1007/s00455-023-10567-0
  125. Graziella Rubino. Complex liaisons moving forward the Parkinson’s disease? An appraisal. Basal Ganglia 2015;5:77
    https://doi.org/10.1016/j.baga.2015.09.001
  126. Isabel Paiva, Raquel Pinho, Maria Angeliki Pavlou, Magali Hennion, Pauline Wales, Anna-Lena Schütz, Ashish Rajput, Éva M. Szegő, Cemil Kerimoglu, Ellen Gerhardt, Ana Cristina Rego, André Fischer, Stefan Bonn, Tiago F. Outeiro. Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. 2017;26:2231
    https://doi.org/10.1093/hmg/ddx114
  127. Desiree Willkommen, Marianna Lucio, Franco Moritz, Sara Forcisi, Basem Kanawati, Kirill S. Smirnov, Michael Schroeter, Ali Sigaroudi, Philippe Schmitt-Kopplin, Bernhard Michalke, Anna Halama. Metabolomic investigations in cerebrospinal fluid of Parkinson's disease. PLoS ONE 2018;13:e0208752
    https://doi.org/10.1371/journal.pone.0208752
  128. Analia Bortolozzi, Sharon Manashirov, Alon Chen, Francesc Artigas. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacology & Therapeutics 2021;227:107873
    https://doi.org/10.1016/j.pharmthera.2021.107873
  129. Nguyen Thanh Nhu, Yu-Jung Cheng, Shin-Da Lee. Effects of Treadmill Exercise on Neural Mitochondrial Functions in Parkinson’s Disease: A Systematic Review of Animal Studies. Biomedicines 2021;9:1011
    https://doi.org/10.3390/biomedicines9081011
  130. Deng Tao, Yue Wang, Xiu-Qi Bao, Bei-Bei Yang, Fan Gao, Lin Wang, Dan Zhang, Li Li. Discovery of coumarin Mannich base derivatives as multifunctional agents against monoamine oxidase B and neuroinflammation for the treatment of Parkinson's disease. European Journal of Medicinal Chemistry 2019;173:203
    https://doi.org/10.1016/j.ejmech.2019.04.016
  131. Muneeb U. Rehman, Nouroz Sehar, Nawab John Dar, Andleeb Khan, Azher Arafah, Summya Rashid, Shahzada Mudasir Rashid, Majid Ahmad Ganaie. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neuroscience & Biobehavioral Reviews 2023;144:104961
    https://doi.org/10.1016/j.neubiorev.2022.104961
  132. Yura Jang, Olga Pletnikova, Juan C. Troncoso, Alexander Y. Pantelyat, Ted M. Dawson, Liana S. Rosenthal, Chan Hyun Na. Mass Spectrometry–Based Proteomics Analysis of Human Substantia Nigra From Parkinson's Disease Patients Identifies Multiple Pathways Potentially Involved in the Disease. Molecular & Cellular Proteomics 2023;22:100452
    https://doi.org/10.1016/j.mcpro.2022.100452
  133. Ramandeep Kaur, Sidharth Mehan, Shamsher Singh. Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. Neurol Sci 2019;40:13
    https://doi.org/10.1007/s10072-018-3585-x
  134. Minrui Weng, Xiaoji Xie, Chao Liu, Kah-Leong Lim, Cheng-wu Zhang, Lin Li. The Sources of Reactive Oxygen Species and Its Possible Role in the Pathogenesis of Parkinson’s Disease. Parkinson's Disease 2018;2018:1
    https://doi.org/10.1155/2018/9163040
  135. Werner J. Geldenhuys, Stanley A. Benkovic, Li Lin, Heather M. Yonutas, Samuel D. Crish, Patrick G. Sullivan, Altaf S. Darvesh, Candice M. Brown, Jason R. Richardson. MitoNEET (CISD1) Knockout Mice Show Signs of Striatal Mitochondrial Dysfunction and a Parkinson’s Disease Phenotype. ACS Chem. Neurosci. 2017;8:2759
    https://doi.org/10.1021/acschemneuro.7b00287
  136. Megan C. Bakeberg, Madison E. Hoes, Anastazja M. Gorecki, Frances Theunissen, Abigail L. Pfaff, Jade E. Kenna, Kai Plunkett, Sulev Kõks, P. Anthony Akkari, Frank L. Mastaglia, Ryan S. Anderton. The TOMM40 ‘523’ polymorphism in disease risk and age of symptom onset in two independent cohorts of Parkinson’s disease. Sci Rep 2021;11
    https://doi.org/10.1038/s41598-021-85510-0
  137. M. Aravintha Siva, R. Mahalakshmi, Dipita Bhakta-Guha, Gunjan Guha. Gene therapy for the mitochondrial genome: Purging mutations, pacifying ailments. Mitochondrion 2019;46:195
    https://doi.org/10.1016/j.mito.2018.06.002
  138. Alex Lyakhovich, Dmitry Graifer, Barbora Stefanovie, Lumir Krejci. Mitochondrial dysfunction in DDR-related cancer predisposition syndromes. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2016;1865:184
    https://doi.org/10.1016/j.bbcan.2016.02.006
  139. Ilya A. Kadnikov, Ekaterina R. Verbovaya, Dmitry N. Voronkov, Mikhail V. Voronin, Sergei B. Seredenin. Deferred Administration of Afobazole Induces Sigma1R-Dependent Restoration of Striatal Dopamine Content in a Mouse Model of Parkinson’s Disease. IJMS 2020;21:7620
    https://doi.org/10.3390/ijms21207620
  140. Sumit Jamwal, Jennifer K. Blackburn, John D. Elsworth. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacology & Therapeutics 2021;219:107705
    https://doi.org/10.1016/j.pharmthera.2020.107705
  141. Zahara Chaudhry, Donika Klenja, Najma Janjua, Gerta Cami-Kobeci, Bushra Ahmed. COVID-19 and Parkinson’s Disease: Shared Inflammatory Pathways Under Oxidative Stress. Brain Sciences 2020;10:807
    https://doi.org/10.3390/brainsci10110807
  142. Yashumati Ratan, Aishwarya Rajput, Ashutosh Pareek, Aaushi Pareek, Vivek Jain, Sonia Sonia, Zeba Farooqui, Ranjeet Kaur, Gurjit Singh. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson’s Disease. Biomolecules 2024;14:73
    https://doi.org/10.3390/biom14010073
  143. Katheryn Broman, Abigail U. Davis, Jordan May, Han-A Park. Neuroprotection - New Approaches and Prospects. 2024.
    https://doi.org/10.5772/intechopen.89416
  144. Przemysław Duda, Janusz Wiśniewski, Tomasz Wójtowicz, Olga Wójcicka, Michał Jaśkiewicz, Dominika Drulis-Fajdasz, Dariusz Rakus, James A. McCubrey, Agnieszka Gizak. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opinion on Therapeutic Targets 2018;22:833
    https://doi.org/10.1080/14728222.2018.1526925
  145. Xintong Wu, Satoi Nagasawa, Kasumi Muto, Maiko Ueda, Chitose Suzuki, Takaaki Abe, Atsushi Higashitani. Mitochonic Acid 5 Improves Duchenne Muscular Dystrophy and Parkinson’s Disease Model of Caenorhabditis elegans. IJMS 2022;23:9572
    https://doi.org/10.3390/ijms23179572
  146. Łukasz Smoliński, Anna Członkowska. Cerebral vasomotor reactivity in neurodegenerative diseases. Neurologia i Neurochirurgia Polska 2016;50:455
    https://doi.org/10.1016/j.pjnns.2016.07.011
  147. Reetuparna Nanda, Punyatoya Panda, Monalisa Mishra. Nanomaterials in Diagnostic Tools and Devices. 2016.
    https://doi.org/10.1016/B978-0-12-817923-9.00017-1
  148. Margrethe A. Olesen, Francisca Villavicencio-Tejo, Rodrigo A. Quintanilla. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022;11
    https://doi.org/10.1186/s40035-022-00308-y
  149. Sophia Liu, Davide D’Amico, Eric Shankland, Saakshi Bhayana, Jose M. Garcia, Patrick Aebischer, Chris Rinsch, Anurag Singh, David J. Marcinek. Effect of Urolithin A Supplementation on Muscle Endurance and Mitochondrial Health in Older Adults. JAMA Netw Open 2022;5:e2144279
    https://doi.org/10.1001/jamanetworkopen.2021.44279
  150. Valeria C. Goncalves, Victor Silva da Fonsêca, Daniele de Paula Faria, Mario Augusto Izidoro, Andresa Aparecida Berretta, Antônio-Carlos G. de Almeida, Fernando Luiz Affonso Fonseca, Fulvio Alexandre Scorza, Carla Alessandra Scorza. Propolis induces cardiac metabolism changes in 6-hydroxydopamine animal model: A dietary intervention as a potential cardioprotective approach in Parkinson’s disease. Front. Pharmacol. 2022;13
    https://doi.org/10.3389/fphar.2022.1013703
  151. Manal Khanouchi, Jawad Laadraoui, Souad El Amine, Abdelmohcine Aimrane, Bilal El-Mansoury, Kamal Smimih, Fatima Ez-Zahraa Saad, Abdelaati El Khiat, Abdeslam Ferssiwi, Abdelali Bitar, Omar Mamad. Experimental and Clinical Evidence of the Neuropathology of Parkinson’s Disease. 2022.
    https://doi.org/10.4018/978-1-6684-5156-4.ch009
  152. Jagjit Singh, Maria L. Habean, Nikhil Panicker. Inflammasome assembly in neurodegenerative diseases. Trends in Neurosciences 2023;46:814
    https://doi.org/10.1016/j.tins.2023.07.009
  153. Yuri Lee, Sooji Choi, Kyung Won Kim. Dithianon exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans. Ecotoxicology and Environmental Safety 2023;255:114752
    https://doi.org/10.1016/j.ecoenv.2023.114752
  154. Xinglong Yang, Ran An, Quanzhen Zhao, Jinhua Zheng, Sijia Tian, Yalan Chen, Yanming Xu. Mutational analysis of CHCHD2 in Chinese patients with multiple system atrophy and amyotrophic lateral sclerosis. Journal of the Neurological Sciences 2016;368:389
    https://doi.org/10.1016/j.jns.2016.07.063
  155. Mahima Koshatwar, Sourya Acharya, Roshan Prasad, Tejaswee Lohakare, Mayur Wanjari, Avinash B Taksande. Exploring the Potential of Antidiabetic Agents as Therapeutic Approaches for Alzheimer's and Parkinson's Diseases: A Comprehensive Review. 2023
    https://doi.org/10.7759/cureus.44763
  156. Vuu My Dung, Dang Thi Phuong Thao. Drosophila Models for Human Diseases. 2023.
    https://doi.org/10.1007/978-981-13-0529-0_4
  157. Xiaohong Wang, Dongyi Ding, Lei Wu, Tianlin Jiang, Chenghao Wu, Yue Ge, Xinqing Guo. PHB blocks endoplasmic reticulum stress and apoptosis induced by MPTP/MPP+ in PD models. Journal of Chemical Neuroanatomy 2021;113:101922
    https://doi.org/10.1016/j.jchemneu.2021.101922
  158. Da-Tong Ju, Kalaiselvi Sivalingam, Wei-Wen Kuo, Tsung-Jung Ho, Ruey-Lin Chang, Li-Chin Chung, Cecilia Hsuan Day, Vijaya Padma Viswanadha, Po-Hsiang Liao, Chih-Yang Huang. Effect of Vasicinone against Paraquat-Induced MAPK/p53-Mediated Apoptosis via the IGF-1R/PI3K/AKT Pathway in a Parkinson’s Disease-Associated SH-SY5Y Cell Model. Nutrients 2019;11:1655
    https://doi.org/10.3390/nu11071655
  159. Jing Liu, Huizheng Hu, Binyan Wu. RIPK1 inhibitor ameliorates the MPP+/MPTP-induced Parkinson’s disease through the ASK1/JNK signalling pathway. Brain Research 2021;1757:147310
    https://doi.org/10.1016/j.brainres.2021.147310
  160. Sunday Solomon Josiah, Courage Dele Famusiwa, Olamide Olajusi Crown, Akeem O. Lawal, Mary Tolulope Olaleye, Afolabi Akintunde Akindahunsi, Afolabi Clement Akinmoladun. Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. NeuroToxicology 2022;90:158
    https://doi.org/10.1016/j.neuro.2022.03.004
  161. Laimonas Kelbauskas, Honor Glenn, Clifford Anderson, Jacob Messner, Kristen B. Lee, Ganquan Song, Jeff Houkal, Fengyu Su, Liqiang Zhang, Yanqing Tian, Hong Wang, Kimberly Bussey, Roger H. Johnson, Deirdre R. Meldrum. A platform for high-throughput bioenergy production phenotype characterization in single cells. Sci Rep 2017;7
    https://doi.org/10.1038/srep45399
  162. Heather Wilson, Gennaro Pagano, Edoardo Rosario de Natale, Ayla Mansur, Silvia Paola Caminiti, Sotirios Polychronis, Lefkos T. Middleton, Geraint Price, Karl F. Schmidt, Roger N. Gunn, Eugenii A. Rabiner, Marios Politis. Mitochondrial Complex 1, Sigma 1, and Synaptic Vesicle 2A in Early Drug‐Naive Parkinson's Disease. Movement Disorders 2020;35:1416
    https://doi.org/10.1002/mds.28064
  163. Sarmistha Saha, Brigitta Buttari, Elisabetta Profumo, Paolo Tucci, Luciano Saso. A Perspective on Nrf2 Signaling Pathway for Neuroinflammation: A Potential Therapeutic Target in Alzheimer's and Parkinson's Diseases. Front. Cell. Neurosci. 2022;15
    https://doi.org/10.3389/fncel.2021.787258
  164. Satoru Torii, Shuya Kasai, Tatsushi Yoshida, Ken-ichi Yasumoto, Shigeomi Shimizu. Mitochondrial E3 Ubiquitin Ligase Parkin: Relationships with Other Causal Proteins in Familial Parkinson’s Disease and Its Substrate-Involved Mouse Experimental Models. IJMS 2020;21:1202
    https://doi.org/10.3390/ijms21041202
  165. Wei Song, Marisa Cressatti, Hillel Zukor, Adrienne Liberman, Carmela Galindez, Hyman M. Schipper. Parkinsonian features in aging GFAP.HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment. Neurobiology of Aging 2017;58:163
    https://doi.org/10.1016/j.neurobiolaging.2017.06.017
  166. Leah Mursaleen, Stefanie Ho Yi Chan, Brendon Noble, Satyanarayana Somavarapu, Mohammed Gulrez Zariwala. Curcumin and N-Acetylcysteine Nanocarriers Alone or Combined with Deferoxamine Target the Mitochondria and Protect against Neurotoxicity and Oxidative Stress in a Co-Culture Model of Parkinson’s Disease. Antioxidants 2023;12:130
    https://doi.org/10.3390/antiox12010130
  167. Kseniia S. Orobets, Andrey L. Karamyshev. Amyloid Precursor Protein and Alzheimer’s Disease. IJMS 2023;24:14794
    https://doi.org/10.3390/ijms241914794
  168. Ruru Li, Jianzong Chen. Salidroside Protects Dopaminergic Neurons by Enhancing PINK1/Parkin-Mediated Mitophagy. Oxidative Medicine and Cellular Longevity 2019;2019:1
    https://doi.org/10.1155/2019/9341018
  169. Anuj Kumar Burakoti, Ram Kumar Roy, Harikesh Dubey. Safety of opicapone use in Parkinson’s disease: review of literature and real-world safety data. World Journal of Current Med and Pharm Research 2023:202
    https://doi.org/10.37022/wjcmpr.v5i5.292
  170. Shanikumar Goyani, Anjali Shinde, Shatakshi Shukla, M. V. Saranga, Fatema Currim, Minal Mane, Jyoti Singh, Milton Roy, Dhruv Gohel, Nisha Chandak, Hitesh Vasiyani, Rajesh Singh. Enhanced translocation of TRIM32 to mitochondria sensitizes dopaminergic neuronal cells to apoptosis during stress conditions in Parkinson's disease. The FEBS Journal 2024
    https://doi.org/10.1111/febs.17065
  171. Bianca Caroline da Cunha Germano, Lara Cristina Carlos de Morais, Francisca Idalina Neta, Amélia Carolina Lopes Fernandes, Francisco Irochima Pinheiro, Amália Cinthia Meneses do Rego, Irami Araújo Filho, Eduardo Pereira de Azevedo, José Rodolfo Lopes de Paiva Cavalcanti, Fausto Pierdona Guzen, Ricardo Ney Cobucci. Vitamin E and Its Molecular Effects in Experimental Models of Neurodegenerative Diseases. IJMS 2023;24:11191
    https://doi.org/10.3390/ijms241311191
  172. David A. Loeffler, Jan O. Aasly, Peter A. LeWitt, Mary P. Coffey. What Have We Learned from Cerebrospinal Fluid Studies about Biomarkers for Detecting LRRK2 Parkinson’s Disease Patients and Healthy Subjects with Parkinson’s-Associated LRRK2 Mutations?. JPD 2019;9:467
    https://doi.org/10.3233/JPD-191630
  173. Sunil Bhurtel, Nikita Katila, Sunil Srivastav, Sabita Neupane, Dong-Young Choi. Mechanistic comparison between MPTP and rotenone neurotoxicity in mice. NeuroToxicology 2019;71:113
    https://doi.org/10.1016/j.neuro.2018.12.009
  174. Lorenzo Modesti, Alberto Danese, Veronica Angela Maria Vitto, Daniela Ramaccini, Gianluca Aguiari, Roberta Gafà, Giovanni Lanza, Carlotta Giorgi, Paolo Pinton. Mitochondrial Ca2+ Signaling in Health, Disease and Therapy. Cells 2021;10:1317
    https://doi.org/10.3390/cells10061317
  175. Gabriel F. Martins, N. Galamba. Protein aggregation-inhibition: a therapeutic route from Parkinson’s disease to sickle cell anemia. Critical Reviews in Biochemistry and Molecular Biology 2023;58:50
    https://doi.org/10.1080/10409238.2023.2201406
  176. Jaquelini Betta Canever, Letícia Yoshitome Queiroz, Ericks Sousa Soares, Núbia Carelli Pereira de Avelar, Helena Iturvides Cimarosti. Circadian rhythm alterations affecting the pathology of neurodegenerative diseases. Journal of Neurochemistry 2023
    https://doi.org/10.1111/jnc.15883
  177. Cui Ma, Chen Zhang, Mingfei Ma, Lixin Zhang, Linlin Zhang, Fengying Zhang, Yingli Chen, Fangyuan Cao, Minghui Li, Guangtian Wang, Tingting Shen, Hongmin Yao, Yumei Liu, Zhenwei Pan, Shasha Song, Daling Zhu. MiR-125a regulates mitochondrial homeostasis through targeting mitofusin 1 to control hypoxic pulmonary vascular remodeling. J Mol Med 2017;95:977
    https://doi.org/10.1007/s00109-017-1541-5
  178. Ming Lu, Cunjin Su, Chen Qiao, Yaqi Bian, Jianhua Ding, Gang Hu. Metformin Prevents Dopaminergic Neuron Death in MPTP/P-Induced Mouse Model of Parkinson’s Disease via Autophagy and Mitochondrial ROS Clearance. IJNPPY 2016;19:pyw047
    https://doi.org/10.1093/ijnp/pyw047
  179. Orhan Tansel Korkmaz, Neşe Tunçel. Advantages of Vasoactive Intestinal Peptide for the Future Treatment of Parkinson’s Disease. CPD 2019;24:4693
    https://doi.org/10.2174/1381612825666190111150953
  180. Amr Ghit, Hany El Deeb. Cytokines, miRNAs, and Antioxidants as Combined Non-invasive Biomarkers for Parkinson’s Disease. J Mol Neurosci 2022;72:1133
    https://doi.org/10.1007/s12031-022-01984-1
  181. Shivam Kumar Pandey, Rakesh Kumar Singh. Recent developments in nucleic acid-based therapies for Parkinson’s disease: Current status, clinical potential, and future strategies. Front. Pharmacol. 2022;13
    https://doi.org/10.3389/fphar.2022.986668
  182. María Dolores García-Fernández, Ane Larrea, Roberto Fernández, Rafael Rodríguez-Puertas, Egoitz Astigarraga, Iván Manuel, Gabriel Barreda-Gómez. Microarrays, Enzymatic Assays, and MALDI-MS for Determining Specific Alterations to Mitochondrial Electron Transport Chain Activity, ROS Formation, and Lipid Composition in a Monkey Model of Parkinson’s Disease. IJMS 2023;24:5470
    https://doi.org/10.3390/ijms24065470
  183. Qiuting Yan, Chaojun Han, Guanghui Wang, John L. Waddington, Longtai Zheng, Xuechu Zhen. Activation of AMPK/mTORC1-Mediated Autophagy by Metformin Reverses Clk1 Deficiency-Sensitized Dopaminergic Neuronal Death. Mol Pharmacol 2017;92:640
    https://doi.org/10.1124/mol.117.109512
  184. Sandeep K. Barodia, Rose B. Creed, Matthew S. Goldberg. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Research Bulletin 2017;133:51
    https://doi.org/10.1016/j.brainresbull.2016.12.004
  185. Jinghui Xu, Xiaodi Fu, Mengqiu Pan, Xiao Zhou, Zhaoyu Chen, Dongmei Wang, Xiaomei Zhang, Qiong Chen, Yanhui Li, Xiaoxian Huang, Guanghui Liu, Jianjun Lu, Yan Liu, Yafang Hu, Suyue Pan, Qing Wang, Qun Wang, Yunqi Xu. Mitochondrial Creatine Kinase is Decreased in the Serum of Idiopathic Parkinson’s Disease Patients. Aging and disease 2019;10:601
    https://doi.org/10.14336/AD.2018.0615
  186. Ji-Eun Bae, Joon Bum Kim, Doo Sin Jo, Na Yeon Park, Yong Hwan Kim, Ha Jung Lee, Seong Hyun Kim, So Hyun Kim, Mikyung Son, Pansoo Kim, Hong-Yeoul Ryu, Won Ha Lee, Zae Young Ryoo, Hyun-Shik Lee, Yong-Keun Jung, Dong-Hyung Cho. Carnitine Protects against MPP+-Induced Neurotoxicity and Inflammation by Promoting Primary Ciliogenesis in SH-SY5Y Cells. Cells 2022;11:2722
    https://doi.org/10.3390/cells11172722
  187. Akanksha Mishra, Sonu Singh, Virendra Tiwari, Shameema Bano, Shubha Shukla. Dopamine D1 receptor agonism induces dynamin related protein-1 inhibition to improve mitochondrial biogenesis and dopaminergic neurogenesis in rat model of Parkinson’s disease. Behavioural Brain Research 2020;378:112304
    https://doi.org/10.1016/j.bbr.2019.112304
  188. Sarah Hui, Jimmy George, Minesh Kapadia, Hien Chau, Zahn Bariring, Rebecca Earnshaw, Kashfia Shafiq, Lorraine V. Kalia, Suneil K. Kalia. Mitophagy Upregulation Occurs Early in the Neurodegenerative Process Mediated by α-Synuclein. Mol Neurobiol 2024
    https://doi.org/10.1007/s12035-024-04131-6
  189. Md Reyaz Alam, Khadga Raj, Shamsher Singh. The Roles of Calcium Ions in Parkinson’s Disease: Calcium Channel Inhibitors as a Novel Agents?. JMP 2022;3:243
    https://doi.org/10.3390/jmp3040021
  190. Michael Jewett, Elna Dickson, Kajsa Brolin, Matilde Negrini, Itzia Jimenez-Ferrer, Maria Swanberg. Glutathione S-Transferase Alpha 4 Prevents Dopamine Neurodegeneration in a Rat Alpha-Synuclein Model of Parkinson’s Disease. Front. Neurol. 2018;9
    https://doi.org/10.3389/fneur.2018.00222
  191. Michele Ciulla, Lisa Marinelli, Ivana Cacciatore, Antonio Di Stefano. Role of Dietary Supplements in the Management of Parkinson’s Disease. Biomolecules 2019;9:271
    https://doi.org/10.3390/biom9070271
  192. Emily L. Gill, Jeremy P. Koelmel, Richard A. Yost, Michael S. Okun, Vinata Vedam-Mai, Timothy J. Garrett. Mass Spectrometric Methodologies for Investigating the Metabolic Signatures of Parkinson’s Disease: Current Progress and Future Perspectives. Anal. Chem. 2018;90:2979
    https://doi.org/10.1021/acs.analchem.7b04084
  193. Wassana Prisingkorn, Ivan Jakovlić, Shao-Kui Yi, Fang-Yu Deng, Yu-Hua Zhao, Wei-Min Wang. Gene expression patterns indicate that a high-fat–high-carbohydrate diet causes mitochondrial dysfunction in fish. Genome 2019;62:53
    https://doi.org/10.1139/gen-2018-0159
  194. Nicolas Giguère, Samuel Burke Nanni, Louis-Eric Trudeau. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease. Front. Neurol. 2018;9
    https://doi.org/10.3389/fneur.2018.00455
  195. Xinglong Yang, Quanzhen Zhao, Ran An, JinHua Zheng, Sijia Tian, Yalan Chen, Yanming Xu. Mutational scanning of the CHCHD2 gene in Han Chinese patients with Parkinson’s disease and meta-analysis of the literature. Parkinsonism & Related Disorders 2016;29:42
    https://doi.org/10.1016/j.parkreldis.2016.05.032
  196. Lauren H. Fairley, Amandine Grimm, Anne Eckert. Mitochondria Transfer in Brain Injury and Disease. Cells 2022;11:3603
    https://doi.org/10.3390/cells11223603
  197. Prabitha P, Antony Justin, T. Durai Ananda Kumar, Mithuna Chinaswamy, B. R. Prashantha Kumar. Glitazones Activate PGC-1α Signaling via PPAR-γ: A Promising Strategy for Antiparkinsonism Therapeutics. ACS Chem. Neurosci. 2021;12:2261
    https://doi.org/10.1021/acschemneuro.1c00085
  198. Souvarish Sarkar, Emir Malovic, Dilshan S. Harishchandra, Shivani Ghaisas, Nikhil Panicker, Adhithiya Charli, Bharathi N. Palanisamy, Dharmin Rokad, Huajun Jin, Vellareddy Anantharam, Arthi Kanthasamy, Anumantha G. Kanthasamy. Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. npj Parkinson's Disease 2017;3
    https://doi.org/10.1038/s41531-017-0032-2
  199. Sara Moreira, Inês Fonseca, Maria João Nunes, Alexandra Rosa, Luísa Lemos, Elsa Rodrigues, Andreia Neves Carvalho, Tiago F. Outeiro, Cecília Maria Pereira Rodrigues, Maria João Gama, Margarida Castro-Caldas. Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson's disease. Experimental Neurology 2017;295:77
    https://doi.org/10.1016/j.expneurol.2017.05.009
  200. Ching-Chi Chiu, Tu-Hsueh Yeh, Chin-Song Lu, Yin-Cheng Huang, Yi-Chuan Cheng, Ying-Zu Huang, Yi-Hsin Weng, Yu-Chuan Liu, Szu-Chia Lai, Ying-Ling Chen, Yu-Jie Chen, Chao-Lang Chen, Hsin-Yi Chen, Yan-Wei Lin, Hung-Li Wang. PARK14 PLA2G6 mutants are defective in preventing rotenone-induced mitochondrial dysfunction, ROS generation and activation of mitochondrial apoptotic pathway. Oncotarget 2017;8:79046
    https://doi.org/10.18632/oncotarget.20893
  201. Caner Günaydın, Bahattin Avcı, Ayhan Bozkurt, Mehmet Emin Önger, Hakan Balcı, S. Sırrı Bilge. Effects of agomelatine in rotenone-induced Parkinson’s disease in rats. Neuroscience Letters 2019;699:71
    https://doi.org/10.1016/j.neulet.2019.01.057
  202. Emily L. Gill, Shreya Raman, Richard A. Yost, Timothy J. Garrett, Vinata Vedam-Mai. l-Carnitine Inhibits Lipopolysaccharide-Induced Nitric Oxide Production of SIM-A9 Microglia Cells. ACS Chem. Neurosci. 2018;9:901
    https://doi.org/10.1021/acschemneuro.7b00468
  203. Ava Nasrolahi, Javad Mahmoudi, Abolfazl Akbarzadeh, Mohammad Karimipour, Saeed Sadigh-Eteghad, Roya Salehi, Mehdi Farhoudi. Neurotrophic factors hold promise for the future of Parkinson’s disease treatment: is there a light at the end of the tunnel?. 2018;29:475
    https://doi.org/10.1515/revneuro-2017-0040
  204. Yanjun Huang, Lirong Sun, Shuzhen Zhu, Liu Xu, Shuhu Liu, Chunhua Yuan, Yanwu Guo, Xuemin Wang. Neuroprotection Against Parkinson’s Disease Through the Activation of Akt/GSK3β Signaling Pathway by Tovophyllin A. Front. Neurosci. 2020;14
    https://doi.org/10.3389/fnins.2020.00723
  205. Rana Abdul Razzak, Gordon J. Florence, Frank J. Gunn-Moore. Approaches to CNS Drug Delivery with a Focus on Transporter-Mediated Transcytosis. IJMS 2019;20:3108
    https://doi.org/10.3390/ijms20123108
  206. Vicente Clemente-Suárez, Laura Redondo-Flórez, Ana Beltrán-Velasco, Domingo Ramos-Campo, Pedro Belinchón-deMiguel, Ismael Martinez-Guardado, Athanasios Dalamitros, Rodrigo Yáñez-Sepúlveda, Alexandra Martín-Rodríguez, José Tornero-Aguilera. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023;11:2488
    https://doi.org/10.3390/biomedicines11092488
  207. Veronika Antonyová, Zdeněk Kejík, Tereza Brogyányi, Robert Kaplánek, Martina Pajková, Veronika Talianová, Róbert Hromádka, Michal Masařík, David Sýkora, Lucie Mikšátková, Pavel Martásek, Milan Jakubek. Role of mtDNA disturbances in the pathogenesis of Alzheimer’s and Parkinson’s disease. DNA Repair 2020;91-92:102871
    https://doi.org/10.1016/j.dnarep.2020.102871
  208. Carlos Henrique Rocha Catalão, Anderson Oliveira Souza, Nilton Nascimento Santos-Júnior, Stephanya Covas da Silva, Luís Henrique Angenendt da Costa, Luciane Carla Alberici, Maria José Alves Rocha, Luiza da Silva Lopes. Kaolin-induced hydrocephalus causes acetylcholinesterase activity dysfunction following hypothalamic damage in infant rats. Brain Research 2019;1724:146408
    https://doi.org/10.1016/j.brainres.2019.146408
  209. Jing Wang, Xiao-Na Zhang, Jin-Ni Fang, Fei-Fei Hua, Jing-Yang Han, Zeng-Qiang Yuan, An-Mu Xie. The mechanism behind activation of the Nod-like receptor family protein 3 inflammasome in Parkinson’s disease. Neural Regen Res 2022;17:898
    https://doi.org/10.4103/1673-5374.323077
  210. Gabriel Gonzalez, Jiří Hodoň, Anna Kazakova, Cosimo Walter D’Acunto, Petr Kaňovský, Milan Urban, Miroslav Strnad. Novel pentacyclic triterpenes exhibiting strong neuroprotective activity in SH-SY5Y cells in salsolinol- and glutamate-induced neurodegeneration models. European Journal of Medicinal Chemistry 2021;213:113168
    https://doi.org/10.1016/j.ejmech.2021.113168
  211. Jay Gupta, Koneni V. Sashidhara. Recent advances in natural products targeting α-synuclein aggregation or clearance in Parkinson's disease. European Journal of Medicinal Chemistry Reports 2023;9:100114
    https://doi.org/10.1016/j.ejmcr.2023.100114
  212. Faten Taram, Aimee N. Winter, Daniel A. Linseman. Neuroprotection comparison of chlorogenic acid and its metabolites against mechanistically distinct cell death-inducing agents in cultured cerebellar granule neurons. Brain Research 2016;1648:69
    https://doi.org/10.1016/j.brainres.2016.07.028
  213. Pietro Crispino, Miriam Gino, Elena Barbagelata, Tiziana Ciarambino, Cecilia Politi, Immacolata Ambrosino, Rosalia Ragusa, Marina Marranzano, Antonio Biondi, Marco Vacante. Gender Differences and Quality of Life in Parkinson’s Disease. IJERPH 2020;18:198
    https://doi.org/10.3390/ijerph18010198
  214. Tapan Behl, Piyush Madaan, Aayush Sehgal, Sukhbir Singh, Neelam Sharma, Saurabh Bhatia, Ahmed Al-Harrasi, Sridevi Chigurupati, Ibrahim Alrashdi, Simona Gabriela Bungau. Elucidating the Neuroprotective Role of PPARs in Parkinson’s Disease: A Neoteric and Prospective Target. IJMS 2021;22:10161
    https://doi.org/10.3390/ijms221810161
  215. A.I. Zaydi, L.-C. Lew, Y.-Y. Hor, M.H. Jaafar, L.-O. Chuah, K.-P. Yap, A. Azlan, G. Azzam, M.-T. Liong. Lactobacillus plantarum DR7 improved brain health in aging rats via the serotonin, inflammatory and apoptosis pathways. BM 2020;11:753
    https://doi.org/10.3920/BM2019.0200
  216. Zhi Pan, Yingcai Niu, Yini Liang, Xiaojie Zhang, Miaoxian Dong. β-Ecdysterone Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Apoptosis via Mitochondria-Dependent Mechanism: Involvement of p38MAPK–p53 Signaling Pathway. Neurotox Res 2016;30:453
    https://doi.org/10.1007/s12640-016-9631-7
  217. I. A. Zhukova, E. S. Kolupaeva, N. G. Zhukova. Parkinson disease and asthenic syndrome. Z. nevrol. psikhiatr. im. S.S. Korsakova 2018;118:60
    https://doi.org/10.17116/jnevro201811811160
  218. Anna Rita Sarni, Luciana Baroni. Milk and Parkinson disease: Could galactose be the missing link. MNM 2019;12:91
    https://doi.org/10.3233/MNM-180234
  219. Joel Arvin Rodrigues, Rekha K. Narasimhamurthy, Manjunath B. Joshi, Herman Sunil Dsouza, Kamalesh Dattaram Mumbrekar. Pesticides Exposure-Induced Changes in Brain Metabolome: Implications in the Pathogenesis of Neurodegenerative Disorders. Neurotox Res 2022;40:1539
    https://doi.org/10.1007/s12640-022-00534-2
  220. Simone Aloisio, Sara Satolli, Gabriele Bellini, Piervito Lopriore. Parkinsonism in complex neurogenetic disorders: lessons from hereditary dementias, adult-onset ataxias and spastic paraplegias. Neurol Sci 2023;44:3379
    https://doi.org/10.1007/s10072-023-07044-9
  221. Semanti Mukherjee, Arunima Sakunthala, Laxmikant Gadhe, Manisha Poudyal, Ajay Singh Sawner, Pradeep Kadu, Samir K. Maji. Liquid-liquid Phase Separation of α-Synuclein: A New Mechanistic Insight for α-Synuclein Aggregation Associated with Parkinson's Disease Pathogenesis. Journal of Molecular Biology 2023;435:167713
    https://doi.org/10.1016/j.jmb.2022.167713
  222. Komal Panchal, Anand Krishna Tiwari. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2019;47:151
    https://doi.org/10.1016/j.mito.2018.11.002
  223. Despoina Eleftheriadou, Despoina Kesidou, Francisco Moura, Eric Felli, Wenhui Song. Redox‐Responsive Nanobiomaterials‐Based Therapeutics for Neurodegenerative Diseases. Small 2020;16
    https://doi.org/10.1002/smll.201907308
  224. Glaucia Dal Santo, Bruno Oliveira de Veras, Eduardo Rico, Jacir Dal Magro, Jotele Fontana Agostini, Leucio Duarte Vieira, Jean Felipe Fossá Calisto, Ricieri Mocelin, Vitória de Sá Fonseca, Almir Gonçalves Wanderley. Hexane extract from SpoSndias mombin L. (Anacardiaceae) prevents behavioral and oxidative status changes on model of Parkinson's disease in zebrafish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2021;241:108953
    https://doi.org/10.1016/j.cbpc.2020.108953
  225. Allen Caobi, Rajib Kumar Dutta, Luis D Garbinski, Maria Esteban-Lopez, Yasemin Ceyhan, Mickensone Andre, Marko Manevski, Chet Raj Ojha, Jessica Lapierre, Sneham Tiwari, Tiyash Parira, Nazira El-Hage. The Impact of CRISPR-Cas9 on Age-related Disorders: From Pathology to Therapy. Aging and disease 2020;11:895
    https://doi.org/10.14336/AD.2019.0927
  226. Paige Hartsoe, Fernando Holguin, Hong Wei Chu. Mitochondrial Dysfunction and Metabolic Reprogramming in Obesity and Asthma. IJMS 2024;25:2944
    https://doi.org/10.3390/ijms25052944
  227. Edilson Ribeiro de Oliveira Junior, Eleonora Truzzi, Luca Ferraro, Marco Fogagnolo, Barbara Pavan, Sarah Beggiato, Cecilia Rustichelli, Eleonora Maretti, Eliana Martins Lima, Eliana Leo, Alessandro Dalpiaz. Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: Towards a new approach for the management of Parkinson's disease. Journal of Controlled Release 2020;321:540
    https://doi.org/10.1016/j.jconrel.2020.02.033
  228. Yan Chen, Yiwei Hou, Ruli Ge, Jianmei Han, Jing Xu, Jinbo Chen, Hongcai Wang. RETRACTED: Protective effect of roscovitine against rotenone-induced parkinsonism. RNN 2018;36:629
    https://doi.org/10.3233/RNN-180817
  229. Benxu Cheng, Pinki Anand, Anxiu Kuang, Feroz Akhtar, Virginia L. Scofield. N-Acetylcysteine in Combination with IGF-1 Enhances Neuroprotection against Proteasome Dysfunction-Induced Neurotoxicity in SH-SY5Y Cells. Parkinson's Disease 2016;2016:1
    https://doi.org/10.1155/2016/6564212
  230. Leah Mursaleen, Brendon Noble, Stefanie Ho Yi Chan, Satyanarayana Somavarapu, Mohammed Gulrez Zariwala. N-Acetylcysteine Nanocarriers Protect against Oxidative Stress in a Cellular Model of Parkinson’s Disease. Antioxidants 2020;9:600
    https://doi.org/10.3390/antiox9070600
  231. Subham Preetam, Swathi Jonnalagadda, Lamha Kumar, Rajeswari Rath, Soham Chattopadhyay, Badrah S. Alghamdi, Adel M Abuzenadah, Niraj Kumar Jha, Akash Gautam, Sumira Malik, Ghulam Md Ashraf. Therapeutic potential of lipid nanosystems for the treatment of Parkinson’s disease. Ageing Research Reviews 2023;89:101965
    https://doi.org/10.1016/j.arr.2023.101965
  232. Jessica Burns, Amy Claire Buck, Sarah D’ Souza, Admire Dube, Soraya Bardien. Nanophytomedicines as Therapeutic Agents for Parkinson’s Disease. ACS Omega 2023;8:42045
    https://doi.org/10.1021/acsomega.3c04862
  233. Chhavi Bhalothia, Girima Nagda. Nanotherapeutics a promising approach for treatment of Parkinson’s disease. Materials Today: Proceedings 2022;69:A1
    https://doi.org/10.1016/j.matpr.2022.10.311
  234. Raju Dash, Md. Chayan Ali, Israt Jahan, Yeasmin Akter Munni, Sarmistha Mitra, Md. Abdul Hannan, Binod Timalsina, Diyah Fatimah Oktaviani, Ho Jin Choi, Il Soo Moon. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Research Reviews 2021;65:101209
    https://doi.org/10.1016/j.arr.2020.101209
  235. Sylvester I. Omoruyi, Abobaker S. Ibrakaw, Okobi E. Ekpo, James S. Boatwright, Christopher N. Cupido, Ahmed A. Hussein. Neuroprotective Activities of Crossyne flava Bulbs and Amaryllidaceae Alkaloids: Implications for Parkinson’s Disease. Molecules 2021;26:3990
    https://doi.org/10.3390/molecules26133990
  236. Huilin Zhang, Jia Liu, Xue Wang, Chunli Duan, Xiaomin Wang, Hui Yang. V63 and N65 of overexpressed α-synuclein are involved in mitochondrial dysfunction. Brain Research 2016;1642:308
    https://doi.org/10.1016/j.brainres.2016.04.002
  237. Hajar Heidari, David A. Lawrence. Climate Stressors and Physiological Dysregulations: Mechanistic Connections to Pathologies. IJERPH 2023;21:28
    https://doi.org/10.3390/ijerph21010028
  238. Mohammad Reza Sarukhani, Hashem Haghdoost-Yazdi, Gilda Khandan-Chelarci. Changes in the Serum Urate Level Can Predict the Development of Parkinsonism in the 6-Hydroxydopamine Animal Model. Neurochem Res 2018;43:1086
    https://doi.org/10.1007/s11064-018-2522-y
  239. Klaudia Jomova, Renata Raptova, Suliman Y. Alomar, Saleh H. Alwasel, Eugenie Nepovimova, Kamil Kuca, Marian Valko. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023;97:2499
    https://doi.org/10.1007/s00204-023-03562-9
  240. Tomohiro Omura, Miwa Sasaoka, Gaia Hashimoto, Satoshi Imai, Joe Yamamoto, Yuki Sato, Shunsaku Nakagawa, Atsushi Yonezawa, Takayuki Nakagawa, Ikuko Yano, Yoshikazu Tasaki, Kazuo Matsubara. Oxicam-derived non-steroidal anti-inflammatory drugs suppress 1-methyl-4-phenyl pyridinium-induced cell death via repression of endoplasmic reticulum stress response and mitochondrial dysfunction in SH-SY5Y cells. Biochemical and Biophysical Research Communications 2018;503:2963
    https://doi.org/10.1016/j.bbrc.2018.08.078
  241. Rachit Jain, Nusrat Begum, Shruti Rajan, Kamatham Pushpa Tryphena, Dharmendra Kumar Khatri. Role of F-actin-mediated endocytosis and exercise in mitochondrial transplantation in an experimental Parkinson's disease mouse model. Mitochondrion 2024;74:101824
    https://doi.org/10.1016/j.mito.2023.11.007
  242. Cestmir Cejka, Sarka Kubinova, Jitka Cejkova. The preventive and therapeutic effects of molecular hydrogen in ocular diseases and injuries where oxidative stress is involved. Free Radical Research 2019;53:237
    https://doi.org/10.1080/10715762.2019.1582770
  243. Florian Brugger, Kailash P. Bhatia, Frank M. C. Besag. Valproate-Associated Parkinsonism: A Critical Review of the Literature. CNS Drugs 2016;30:527
    https://doi.org/10.1007/s40263-016-0341-8
  244. Niveditha S, T. Shivanandappa. Neuroprotective action of 4-Hydroxyisophthalic acid against paraquat-induced motor impairment involves amelioration of mitochondrial damage and neurodegeneration in Drosophila. NeuroToxicology 2018;66:160
    https://doi.org/10.1016/j.neuro.2018.04.006
  245. Azra Kulovic-Sissawo, Carolina Tocantins, Mariana S. Diniz, Elisa Weiss, Andreas Steiner, Silvija Tokic, Corina T. Madreiter-Sokolowski, Susana P. Pereira, Ursula Hiden. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. Biology 2024;13:70
    https://doi.org/10.3390/biology13020070
  246. Zhikun Sun, Xingrong Ma, Hongqi Yang, Shuai Chen, Shuang He, Ruihua Sun, Hong Lu, Jiewen Zhang. Characterization of Age-dependent Behavior Deficits in the PGC-1α Knockout Mouse, in Relevance to the Parkinson's Disease Model. Neuroscience 2020;440:39
    https://doi.org/10.1016/j.neuroscience.2020.05.015
  247. Antonina Kouli, Kelli M. Torsney, Wei-Li Kuan. Parkinson’s Disease: Pathogenesis and Clinical Aspects . 2020.
    https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch1
  248. Ibrahim, Llano. Aging and Central Auditory Disinhibition: Is It a Reflection of Homeostatic Downregulation or Metabolic Vulnerability?. Brain Sciences 2019;9:351
    https://doi.org/10.3390/brainsci9120351
  249. Victor S. Van Laar, Sarah B. Berman, Teresa G. Hastings. Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone. Neurobiology of Disease 2016;91:247
    https://doi.org/10.1016/j.nbd.2016.03.015
  250. Wenxin Tang, Yansong Li, Yan Li, Qiang Wang. Caveolin-1, a novel player in cognitive decline. Neuroscience & Biobehavioral Reviews 2021;129:95
    https://doi.org/10.1016/j.neubiorev.2021.06.044
  251. Garth L. Nicolson, Gonzalo Ferreira de Mattos, Robert Settineri, Carlos Costa, Rita Ellithorpe, Steven Rosenblatt, James La Valle, Antonio Jimenez, Shigeo Ohta. Clinical Effects of Hydrogen Administration: From Animal and Human Diseases to Exercise Medicine. IJCM 2016;07:32
    https://doi.org/10.4236/ijcm.2016.71005
  252. Yasmine Ould Amer, Etienne Hebert-Chatelain. Mitochondrial cAMP-PKA signaling: What do we really know?. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2018;1859:868
    https://doi.org/10.1016/j.bbabio.2018.04.005
  253. Xin-Jieh Lam, Bingzhe Xu, Pei-Ling Yeo, Pike-See Cheah, King-Hwa Ling. Mitochondria dysfunction and bipolar disorder: From pathology to therapy. IBRO Neuroscience Reports 2023;14:407
    https://doi.org/10.1016/j.ibneur.2023.04.002