en Experimental Neurobiology

Cited by CrossRef (153)

  1. Emanuel Lauber, Federica Filice, Beat Schwaller. Prenatal Valproate Exposure Differentially Affects Parvalbumin-Expressing Neurons and Related Circuits in the Cortex and Striatum of Mice. Front. Mol. Neurosci. 2016;9
    https://doi.org/10.3389/fnmol.2016.00150
  2. Qingtuan Meng, Wendiao Zhang, Xuan Wang, Chuan Jiao, Sheng Xu, Chunyu Liu, Beisha Tang, Chao Chen. Human forebrain organoids reveal connections between valproic acid exposure and autism risk. Transl Psychiatry 2022;12
    https://doi.org/10.1038/s41398-022-01898-x
  3. Maryam Saadat, Abbas Ali Taherian, Mohammad Reza Aldaghi, Payman Raise‐Abdullahi, Hamid Reza Sameni, Abbas Ali Vafaei. Prangos ferulacea (L.) ameliorates behavioral alterations, hippocampal oxidative stress markers, and apoptotic deficits in a rat model of autism induced by valproic acid. Brain and Behavior 2023;13
    https://doi.org/10.1002/brb3.3224
  4. Siegrid Löwel, Evgenia Kalogeraki, Susanne Dehmel, Kalina Makowiecki. Environmental conditions strongly affect brain plasticity. 2018;24:A19
    https://doi.org/10.1515/nf-2017-A050
  5. Judit Biosca-Brull, Pia Basaure, Laia Guardia-Escote, Maria Cabré, Jordi Blanco, Miguel Morales-Navas, Fernando Sánchez-Santed, Maria Teresa Colomina. Environmental exposure to chlorpyrifos during gestation, APOE polymorphism and the risk on autistic-like behaviors. Environmental Research 2023;237:116969
    https://doi.org/10.1016/j.envres.2023.116969
  6. Manzumeh Shamsi Meymandi, Gholamreza Sepehri, Amirhossein Moslemizadeh, SeyyedSajjad Vakili Shahrbabaki, Hamideh Bashiri. Prenatal pregabalin is associated with sex‐dependent alterations in some behavioral parameters in valproic acid‐induced autism in rat offspring. Intl J of Devlp Neuroscience 2020;80:500
    https://doi.org/10.1002/jdn.10046
  7. Tamanna Jahan Mony, Jae Won Lee, Cheryl Dreyfus, Emanuel DiCicco-Bloom, Hee Jae Lee. Valproic Acid Exposure during Early Postnatal Gliogenesis Leads to Autistic-like Behaviors in Rats. Clin Psychopharmacol Neurosci 2016;14:338
    https://doi.org/10.9758/cpn.2016.14.4.338
  8. Sum Yi Ma, Kin Ming Kwan. Size anomaly and alteration of GABAergic enzymes expressions in cerebellum of a valproic acid mouse model of autism. Behavioural Brain Research 2022;428:113896
    https://doi.org/10.1016/j.bbr.2022.113896
  9. Nermin Eissa, Sheikh Azimullah, Petrilla Jayaprakash, Richard L. Jayaraj, David Reiner, Shreesh K. Ojha, Rami Beiram, Holger Stark, Dorota Łażewska, Katarzyna Kieć-Kononowicz, Bassem Sadek. The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chemico-Biological Interactions 2019;312:108775
    https://doi.org/10.1016/j.cbi.2019.108775
  10. Ming-Chia Chu, Han-Fang Wu, Chi-Wei Lee, Yueh-Jung Chung, Hsiang Chi, Po See Chen, Hui-Ching Lin. Generational synaptic functions of GABAA receptor β3 subunit deteriorations in an animal model of social deficit. J Biomed Sci 2022;29
    https://doi.org/10.1186/s12929-022-00835-w
  11. Se Jin Jeon, Edson Luck Gonzales, Darine Froy N. Mabunga, Schley T. Valencia, Do Gyeong Kim, Yujeong Kim, Keremkleroo Jym L. Adil, Dongpil Shin, Donghyun Park, Chan Young Shin. Sex-specific Behavioral Features of Rodent Models of Autism Spectrum Disorder. Exp Neurobiol 2018;27:321
    https://doi.org/10.5607/en.2018.27.5.321
  12. Ruoxin Zhang, Jinlong Zhou, Junrong Ren, Siqi Sun, Yuanyuan Di, Hanyu Wang, Xiaoqin An, Kexin Zhang, Junfeng Zhang, Zhaoqiang Qian, Meimei Shi, Yanning Qiao, Wei Ren, Yingfang Tian. Transcriptional and splicing dysregulation in the prefrontal cortex in valproic acid rat model of autism. Reproductive Toxicology 2018;77:53
    https://doi.org/10.1016/j.reprotox.2018.01.008
  13. Seyyed Sajjad Vakili Shahrbabaki, Amirhossein Moslemizadeh, Sedigheh Amiresmaili, Sara Sheibani Tezerji, Kobra Bahrampour Juybari, Gholamreza Sepehri, Manzumeh Shamsi Meymandi, Hamideh Bashiri. Ameliorating age-dependent effects of resveratrol on VPA-induced social impairments and anxiety-like behaviors in a rat model of neurodevelopmental disorder. NeuroToxicology 2023;96:154
    https://doi.org/10.1016/j.neuro.2023.03.003
  14. Yuanyuan Di, Zhongqi Li, Jin Li, Qiangqiang Cheng, Qi Zheng, Chenyang Zhai, Mengsi Kang, Chunling Wei, Jijun Lan, Juan Fan, Wei Ren, Yingfang Tian. Maternal folic acid supplementation prevents autistic behaviors in a rat model induced by prenatal exposure to valproic acid. Food Funct. 2021;12:4544
    https://doi.org/10.1039/D0FO02926B
  15. Zahra Karimi, Asadollah Zarifkar, Mehdi Dianatpour, Esmaeil Mirzaei, Mahintaj Dara, Hadi Aligholi. Finding a Proper Valproic Acid-Based Autism Spectrum Disorder Model in Zebrafish: Early and Long-term Neurobehavioral Studies. Iran J Psychiatry Behav Sci 2023;17
    https://doi.org/10.5812/ijpbs-137118
  16. Olga I. Dadalko, Brittany G. Travers. Evidence for Brainstem Contributions to Autism Spectrum Disorders. Front. Integr. Neurosci. 2018;12
    https://doi.org/10.3389/fnint.2018.00047
  17. Kristóf László, Orsolya Kiss, Dávid Vörös, Kitti Mintál, Tamás Ollmann, László Péczely, Anita Kovács, Olga Zagoracz, Erika Kertes, Veronika Kállai, Bettina László, Edina Hormay, Beáta Berta, Attila Tóth, Zoltán Karádi, László Lénárd. Intraamygdaloid Oxytocin Reduces Anxiety in the Valproate-Induced Autism Rat Model. Biomedicines 2022;10:405
    https://doi.org/10.3390/biomedicines10020405
  18. Arjun S Malhotra, Randy Kulesza. Abnormal auditory brainstem responses in an animal model of autism spectrum disorder. Hearing Research 2023;436:108816
    https://doi.org/10.1016/j.heares.2023.108816
  19. Yusra Mansour, Syed Naved Ahmed, Randy Kulesza. Abnormal morphology and subcortical projections to the medial geniculate in an animal model of autism. Exp Brain Res 2021;239:381
    https://doi.org/10.1007/s00221-020-05982-w
  20. Thomas Hennessey, Elissar Andari, Donald G. Rainnie. RDoC-based categorization of amygdala functions and its implications in autism. Neuroscience & Biobehavioral Reviews 2018;90:115
    https://doi.org/10.1016/j.neubiorev.2018.04.007
  21. Gabriel S. Dichter, Jose Rodriguez-Romaguera. Anhedonia: Preclinical, Translational, and Clinical Integration. 2018.
    https://doi.org/10.1007/7854_2022_312
  22. Yingxun Liu, Yuanyuan Di, Qi Zheng, Zhaoqiang Qian, Juan Fan, Wei Ren, Zhaoming Wei, Yingfang Tian. Altered expression of glycan patterns and glycan-related genes in the medial prefrontal cortex of the valproic acid rat model of autism. Front. Cell. Neurosci. 2022;16
    https://doi.org/10.3389/fncel.2022.1057857
  23. Hariom Kumar, Vishal Diwan, Bhupesh Sharma. Protective Effect of Nimodipine Against Valproic-acid Induced Biochemical and Behavioral Phenotypes of Autism. Clin Psychopharmacol Neurosci 2022;20:725
    https://doi.org/10.9758/cpn.2022.20.4.725
  24. Miguel Morales-Navas, Cristian Perez-Fernandez, Sergio Castaño-Castaño, Ainhoa Sánchez-Gil, María Teresa Colomina, Xavier Leinekugel, Fernando Sánchez-Santed. Sociability: Comparing the Effect of Chlorpyrifos with Valproic Acid. J Autism Dev Disord 2024
    https://doi.org/10.1007/s10803-024-06263-z
  25. Hsiao-Ying Kuo, Fu-Chin Liu. Pathophysiological Studies of Monoaminergic Neurotransmission Systems in Valproic Acid-Induced Model of Autism Spectrum Disorder. Biomedicines 2022;10:560
    https://doi.org/10.3390/biomedicines10030560
  26. Mohammed Ali Eshra, Laila Ahmed Rashed, Rania Farag A. Eltelbany, Heba Omar, Asmaa Mohammed ShamsEldeen. Omega-3 modulates anxiety and improves autistic like features induced by high fat diet but not valproate. Neurology, Psychiatry and Brain Research 2019;33:11
    https://doi.org/10.1016/j.npbr.2019.05.006
  27. Nermin Eissa, Sheikh Azimullah, Petrilla Jayaprakash, Richard L. Jayaraj, David Reiner, Shreesh K. Ojha, Rami Beiram, Holger Stark, Dorota Łażewska, Katarzyna Kieć-Kononowicz, Bassem Sadek. The Dual-Active Histamine H3 Receptor Antagonist and Acetylcholine Esterase Inhibitor E100 Alleviates Autistic-Like Behaviors and Oxidative Stress in Valproic Acid Induced Autism in Mice. IJMS 2020;21:3996
    https://doi.org/10.3390/ijms21113996
  28. Darine Froy N. Mabunga, Donghyun Park, Onjeon Ryu, Schley T. Valencia, Keremkleroo Jym L. Adil, Seonmin Kim, Kyoung Ja Kwon, Chan Young Shin, Se Jin Jeon. Recapitulation of Neuropsychiatric Behavioral Features in Mice Using Acute Low-dose MK-801 Administration. Exp Neurobiol 2019;28:697
    https://doi.org/10.5607/en.2019.28.6.697
  29. Mauro Mozael Hirsch, Iohanna Deckmann, Júlio Santos-Terra, Gabriela Zanotto Staevie, Mellanie Fontes-Dutra, Giovanna Carello-Collar, Marília Körbes-Rockenbach, Gustavo Brum Schwingel, Guilherme Bauer-Negrini, Bruna Rabelo, Maria Carolina Bittencourt Gonçalves, Juliana Corrêa-Velloso, Yahaira Naaldijk, Ana Regina Geciauskas Castillo, Tomasz Schneider, Victorio Bambini-Junior, Henning Ulrich, Carmem Gottfried. Effects of single-dose antipurinergic therapy on behavioral and molecular alterations in the valproic acid-induced animal model of autism. Neuropharmacology 2020;167:107930
    https://doi.org/10.1016/j.neuropharm.2019.107930
  30. Christina Catavero, Hechen Bao, Juan Song. Neural mechanisms underlying GABAergic regulation of adult hippocampal neurogenesis. Cell Tissue Res 2018;371:33
    https://doi.org/10.1007/s00441-017-2668-y
  31. Kumari Anshu, Ajay Kumar Nair, Shoba Srinath, T. Rao Laxmi. Altered Developmental Trajectory in Male and Female Rats in a Prenatal Valproic Acid Exposure Model of Autism Spectrum Disorder. J Autism Dev Disord 2023;53:4390
    https://doi.org/10.1007/s10803-022-05684-y
  32. Patrick O. Kanold, Rongkang Deng, Xiangying Meng. The Integrative Function of Silent Synapses on Subplate Neurons in Cortical Development and Dysfunction. Front. Neuroanat. 2019;13
    https://doi.org/10.3389/fnana.2019.00041
  33. Devahuti Chaliha, Matthew Albrecht, Mauro Vaccarezza, Ryu Takechi, Virginie Lam, Hani Al-Salami, John Mamo. A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism. Dev Neurosci 2020;42:12
    https://doi.org/10.1159/000509109
  34. Zach E McKinnell, Tessa Maze, Alejandro Ramos, Brandon Challans, Bethany Plakke. Valproic acid treated female Long-Evans rats are impaired on attentional set-shifting. Behavioural Brain Research 2021;397:112966
    https://doi.org/10.1016/j.bbr.2020.112966
  35. Luana M. Manosso, Lia D.R. Broseghini, José Marcelo B. Campos, Alex Paulo Z. Padilha, Maria Eduarda M. Botelho, Maiara A. da Costa, Helena M. Abelaira, Cinara L. Gonçalves, Gislaine Z. Réus. Beneficial effects and neurobiological aspects of environmental enrichment associated to major depressive disorder and autism spectrum disorder. Brain Research Bulletin 2022;190:152
    https://doi.org/10.1016/j.brainresbull.2022.09.024
  36. Meilin Wu, Yuanyuan Di, Zhijun Diao, Li Yao, Zhaoqiang Qian, Chunling Wei, Qiaohua Zheng, Yihui Liu, Jing Han, Zhiqiang Liu, Juan Fan, Yingfang Tian, Wei Ren. Abnormal reinforcement learning in a mice model of autism induced by prenatal exposure to valproic acid. Behavioural Brain Research 2020;395:112836
    https://doi.org/10.1016/j.bbr.2020.112836
  37. David Zarate-Lopez, Ana Laura Torres-Chávez, Alma Yadira Gálvez-Contreras, Oscar Gonzalez-Perez. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. CN 2024;22:260
    https://doi.org/10.2174/1570159X22666231003121513
  38. Erica Zamberletti, Marina Gabaglio, Marie Woolley-Roberts, Sharon Bingham, Tiziana Rubino, Daniela Parolaro. Cannabidivarin Treatment Ameliorates Autism-Like Behaviors and Restores Hippocampal Endocannabinoid System and Glia Alterations Induced by Prenatal Valproic Acid Exposure in Rats. Front. Cell. Neurosci. 2019;13
    https://doi.org/10.3389/fncel.2019.00367
  39. Miyuki Yasue, Akiko Nakagami, Keiko Nakagaki, Noritaka Ichinohe, Nobuyuki Kawai. Inequity aversion is observed in common marmosets but not in marmoset models of autism induced by prenatal exposure to valproic acid. Behavioural Brain Research 2018;343:36
    https://doi.org/10.1016/j.bbr.2018.01.013
  40. Olivia Larner, Jane Roberts, Jeffery Twiss, Linnea Freeman, Daniel Rossignol. A Need for Consistency in Behavioral Phenotyping for ASD: Analysis of the Valproic Acid Model. Autism Research and Treatment 2021;2021:1
    https://doi.org/10.1155/2021/8863256
  41. Konstantin Yenkoyan, Artem Grigoryan, Katarine Fereshetyan, Diana Yepremyan. Advances in understanding the pathophysiology of autism spectrum disorders. Behavioural Brain Research 2017;331:92
    https://doi.org/10.1016/j.bbr.2017.04.038
  42. . 11th International Congress on Psychopharmacology & 7th International Symposium on Child and Adolescent Psychopharmacology. Psychiatry and Clinical Psychopharmacology 2019;29:264
    https://doi.org/10.1080/24750573.2019.1608692
  43. Guang Yang, Alex Shcheglovitov. Probing disrupted neurodevelopment in autism using human stem cell‐derived neurons and organoids: An outlook into future diagnostics and drug development. Developmental Dynamics 2020;249:6
    https://doi.org/10.1002/dvdy.100
  44. Nelva T. Quezada, Sebastiana F. Salas-Ortíz, Francisco A. Peralta, Felipe I. Aguayo, Katherine P. Morgado-Gallardo, Catherine A. Mac-Rae, Jenny L. Fiedler, Esteban E. Aliaga. Loss of Social/Non-social Context Discrimination by Movement Acceleration in the Valproate Model of Autism. Front. Behav. Neurosci. 2021;14
    https://doi.org/10.3389/fnbeh.2020.555610
  45. Ki Bum Um, Soyoung Kwak, Sun-Ha Cheon, JuHyun Kim, Su-Kyeong Hwang. AST-001 Improves Social Deficits and Restores Dopamine Neuron Activity in a Mouse Model of Autism. Biomedicines 2023;11:3283
    https://doi.org/10.3390/biomedicines11123283
  46. Sweety Mehra, Aitizaz Ul Ahsan, Madhu Sharma, Muskan Budhwar, Mani Chopra. Neuroprotective Efficacy of Fisetin Against VPA-Induced Autistic Neurobehavioral Alterations by Targeting Dysregulated Redox Homeostasis. J Mol Neurosci 2023;73:403
    https://doi.org/10.1007/s12031-023-02127-w
  47. Cássia Regina Suzuki Caires, Ana Luiza Bossolani-Martins. Which form of environmental enrichment is most effective in rodent models of autism?. Behavioural Processes 2023;211:104915
    https://doi.org/10.1016/j.beproc.2023.104915
  48. Nguyen Quoc Vuong Tran, Kunio Miyake. Pharmacoepigenetics. 2023.
    https://doi.org/10.1016/B978-0-12-813939-4.00023-1
  49. Katarine Fereshetyan, Vergine Chavushyan, Margarita Danielyan, Konstantin Yenkoyan. Assessment of behavioral, morphological and electrophysiological changes in prenatal and postnatal valproate induced rat models of autism spectrum disorder. Sci Rep 2021;11
    https://doi.org/10.1038/s41598-021-02994-6
  50. Dan Xia, Li Li, Binrang Yang, Qiang Zhou. Altered Relationship Between Parvalbumin and Perineuronal Nets in an Autism Model. Front. Mol. Neurosci. 2021;14
    https://doi.org/10.3389/fnmol.2021.597812
  51. Liza Weinstein-Fudim, Zivanit Ergaz, Gadi Turgeman, Joseph Yanai, Moshe Szyf, Asher Ornoy. Gender Related Changes in Gene Expression Induced by Valproic Acid in A Mouse Model of Autism and the Correction by S-adenosyl Methionine. Does It Explain the Gender Differences in Autistic Like Behavior?. IJMS 2019;20:5278
    https://doi.org/10.3390/ijms20215278
  52. A. E. Khairullin, D. V. Efimova, D. V. Ivanova, T. V. Baltina, M. E. Baltin, S. N. Grishin, A. U. Ziganshin. DISORDERS OF MOTOR ACTIVITY ON THE MODEL OF AUTISM SPECTRUM DISORDERS. I.P. Pavlov Journal of Higher Nervous Activity 2023;73:819
    https://doi.org/10.31857/S0044467723060047
  53. Manavi Chatterjee, Priya Singh, Jian Xu, Paul J. Lombroso, Pradeep K. Kurup. Inhibition of striatal-enriched protein tyrosine phosphatase (STEP) activity reverses behavioral deficits in a rodent model of autism. Behavioural Brain Research 2020;391:112713
    https://doi.org/10.1016/j.bbr.2020.112713
  54. Lidia Babiec, Anna Wilkaniec, Elżbieta Gawinek, Wojciech Hilgier, Agata Adamczyk. Inhibition of purinergic P2 receptors prevents synaptic and behavioral alterations in a rodent model of autism spectrum disorders.. Research in Autism Spectrum Disorders 2024;112:102353
    https://doi.org/10.1016/j.rasd.2024.102353
  55. Huan Liu, Mei Tan, Boli Cheng, Si Wang, Lu Xiao, Jiang Zhu, Qionghui Wu, Xi Lai, Qian Zhang, Jie Chen, Tingyu Li. Valproic Acid Induces Autism-Like Synaptic and Behavioral Deficits by Disrupting Histone Acetylation of Prefrontal Cortex ALDH1A1 in Rats. Front. Neurosci. 2021;15
    https://doi.org/10.3389/fnins.2021.641284
  56. Seung Hyun Roh, Hadassah Mendez-Vazquez, Matheus F. Sathler, Michael J. Doolittle, Anastasiya Zaytseva, Hannah Brown, Morgan Sainsbury, Seonil Kim. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. Neuropharmacology 2024;253:109963
    https://doi.org/10.1016/j.neuropharm.2024.109963
  57. Xi-Cheng Zhang, Li-Qi Shu, Xing-Sen Zhao, Xue-Kun Li. Autism spectrum disorders: autistic phenotypes and complicated mechanisms. World J Pediatr 2019;15:17
    https://doi.org/10.1007/s12519-018-0210-2
  58. Gustavo Brum Schwingel, Mellanie Fontes-Dutra, Bárbara Ramos, Rudimar Riesgo, Victorio Bambini-Junior, Carmem Gottfried. Preventive effects of resveratrol against early-life impairments in the animal model of autism induced by valproic acid. IBRO Neuroscience Reports 2023;15:242
    https://doi.org/10.1016/j.ibneur.2023.09.008
  59. Yehezkel Sztainberg, Huda Y Zoghbi. Lessons learned from studying syndromic autism spectrum disorders. Nat Neurosci 2016;19:1408
    https://doi.org/10.1038/nn.4420
  60. Yusuf Ozkul, Serpil Taheri, Kezban Korkmaz Bayram, Elif Funda Sener, Ecmel Mehmetbeyoglu, Didem Behice Öztop, Fatma Aybuga, Esra Tufan, Arslan Bayram, Nazan Dolu, Gokmen Zararsiz, Leila Kianmehr, Feyzullah Beyaz, Züleyha Doganyigit, François Cuzin, Minoo Rassoulzadegan. A heritable profile of six miRNAs in autistic patients and mouse models. Sci Rep 2020;10
    https://doi.org/10.1038/s41598-020-65847-8
  61. Yuta Hara, Yukio Ago, Momoko Higuchi, Shigeru Hasebe, Takanobu Nakazawa, Hitoshi Hashimoto, Toshio Matsuda, Kazuhiro Takuma. Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism. Hormones and Behavior 2017;96:130
    https://doi.org/10.1016/j.yhbeh.2017.09.013
  62. Hiroko Kotajima-Murakami, Toshiyuki Kobayashi, Hirofumi Kashii, Atsushi Sato, Yoko Hagino, Miho Tanaka, Yasumasa Nishito, Yukio Takamatsu, Shigeo Uchino, Kazutaka Ikeda. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero. Mol Brain 2019;12
    https://doi.org/10.1186/s13041-018-0423-2
  63. Antonio M. Persico, Francesca Cucinotta, Arianna Ricciardello, Laura Turriziani. Neurodevelopmental Disorders. 2019.
    https://doi.org/10.1016/B978-0-12-814409-1.00003-3
  64. Daiyan Jiao, Yingkai Xu, Fei Tian, Yaqing Zhou, Dong Chen, Yujue Wang. Establishment of animal models and behavioral studies for autism spectrum disorders. J Int Med Res 2024;52
    https://doi.org/10.1177/03000605241245293
  65. Mahmood Hachim, Noha Elemam, Azzam Maghazachi. The Beneficial and Debilitating Effects of Environmental and Microbial Toxins, Drugs, Organic Solvents and Heavy Metals on the Onset and Progression of Multiple Sclerosis. Toxins 2019;11:147
    https://doi.org/10.3390/toxins11030147
  66. Shima Davoudi, Mona Rahdar, Narges Hosseinmardi, Gila Behzadi, Mahyar Janahmadi. Chronic inhibition of astrocytic aquaporin-4 induces autistic-like behavior in control rat offspring similar to maternal exposure to valproic acid. Physiology & Behavior 2023;269:114286
    https://doi.org/10.1016/j.physbeh.2023.114286
  67. Zahra Salari, Amirhossein Moslemizadeh, Sara Sheibani Tezerji, Nazanin Sabet, Ali Saeidpour Parizi, Mohammad Khaksari, Vahid Sheibani, Elham Jafari, Sara Shafieipour, Hamideh Bashiri. Sex‐dependent alterations of inflammatory factors, oxidative stress, and histopathology of the brain‐gut axis in a VPA‐induced autistic‐like model of rats. Birth Defects Research 2024;116
    https://doi.org/10.1002/bdr2.2310
  68. Raju Paudel, Shamsher Singh. Selection of Young Animal Models of Autism over Adult: Benefits and Limitations. Integr. psych. behav. 2023;57:697
    https://doi.org/10.1007/s12124-020-09595-4
  69. Saba Abdi. Animal Models In Experimental Medicine. 2023.
    https://doi.org/10.2174/9789815196382124010013
  70. Rubal Singla, Abhishek Mishra, Rupa Joshi, Rohit Kumar, Phulen Sarma, Amit Raj Sharma, Gurjeet Kaur, Alka Bhatia, Bikash Medhi. Inhibition of the ERK1/2 Phosphorylation by Dextromethorphan Protects against Core Autistic Symptoms in VPA Induced Autistic Rats: In Silico and in Vivo Drug Repurposition Study. ACS Chem. Neurosci. 2021;12:1749
    https://doi.org/10.1021/acschemneuro.0c00672
  71. Gaeun Park, Wooyoung Eric Jang, Seoyeon Kim, Edson Luck Gonzales, Jungeun Ji, Seunghwan Choi, Yujin Kim, Ji Hwan Park, Hazara Begum Mohammad, Geul Bang, Minkyung Kang, Soobin Kim, Se Jin Jeon, Jin Young Kim, Kwang Pyo Kim, Chan Young Shin, Joon-Yong An, Min-Sik Kim, Yong-Seok Lee. Dysregulation of the Wnt/β-catenin signaling pathway via Rnf146 upregulation in a VPA-induced mouse model of autism spectrum disorder. Exp Mol Med 2023;55:1783
    https://doi.org/10.1038/s12276-023-01065-2
  72. Miguel Morales-Navas, Sergio Castaño-Castaño, Cristian Pérez-Fernández, Ainhoa Sánchez-Gil, María Teresa Colomina, Xavier Leinekugel, Fernando Sánchez-Santed. Similarities between the Effects of Prenatal Chlorpyrifos and Valproic Acid on Ultrasonic Vocalization in Infant Wistar Rats. IJERPH 2020;17:6376
    https://doi.org/10.3390/ijerph17176376
  73. I. G. Kapitsa, E. A. Ivanova, T. A. Voronina. Sex-specific Behavioral Characteristics of Rats with Fetal Valproate Syndrome. Moscow Univ. Biol.Sci. Bull. 2020;75:89
    https://doi.org/10.3103/S0096392520020054
  74. Caihong Sun, Mingyang Zou, Ling Li, Dexin Li, Yongjuan Ma, Wei Xia, Lijie Wu, Huan Ren. Association study between inwardly rectifying potassium channels 2.1 and 4.1 and autism spectrum disorders. Life Sciences 2018;213:183
    https://doi.org/10.1016/j.lfs.2018.10.012
  75. Oscar Morales-Dionisio, Fidel de la Cruz, Margarita Franco-Colín, Oriana Hidalgo-Alegría, Gonzalo Flores, José Luna-Muñoz, Linda Garcés-Ramírez. Differential Effects of Valproic Acid on Immobility Responses and Locomotor Activity in Female and Male Rats. PP 2017;08:339
    https://doi.org/10.4236/pp.2017.810025
  76. Nermin Eissa, Petrilla Jayaprakash, Sheikh Azimullah, Shreesh K. Ojha, Mohammed Al-Houqani, Fakhreya Y. Jalal, Dorota Łażewska, Katarzyna Kieć-Kononowicz, Bassem Sadek. The histamine H3R antagonist DL77 attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Sci Rep 2018;8
    https://doi.org/10.1038/s41598-018-31385-7
  77. Siegrid Löwel, Evgenia Kalogeraki, Susanne Dehmel, Kalina Makowiecki. Lebensbedingungen haben einen starken Einfluss auf die Plastizität des Gehirns. 2018;24:25
    https://doi.org/10.1515/nf-2017-0050
  78. Elzbieta Zieminska, Beata Toczylowska, Dominik Diamandakis, Wojciech Hilgier, Robert Kuba Filipkowski, Rafal Polowy, Jaroslaw Orzel, Michal Gorka, Jerzy Wieslaw Lazarewicz. Glutamate, Glutamine and GABA Levels in Rat Brain Measured Using MRS, HPLC and NMR Methods in Study of Two Models of Autism. Front. Mol. Neurosci. 2018;11
    https://doi.org/10.3389/fnmol.2018.00418
  79. Ivina Mali, Macy Payne, Cole King, Tessa R. Maze, Taylor Davison, Brandon Challans, Stefan H. Bossmann, Bethany Plakke. Adolescent female valproic acid rats have impaired extra-dimensional shifts of attention and enlarged anterior cingulate cortices. Brain Research 2023;1800:148199
    https://doi.org/10.1016/j.brainres.2022.148199
  80. Ui-Jin Kim, Namgue Hong, Jin-Chul Ahn. Photobiomodulation Attenuated Cognitive Dysfunction and Neuroinflammation in a Prenatal Valproic Acid-Induced Autism Spectrum Disorder Mouse Model. IJMS 2022;23:16099
    https://doi.org/10.3390/ijms232416099
  81. Nikolai Gobshtis, Matanel Tfilin, Marina Wolfson, Vadim E. Fraifeld, Gadi Turgeman. Transplantation of mesenchymal stem cells reverses behavioural deficits and impaired neurogenesis caused by prenatal exposure to valproic acid. Oncotarget 2017;8:17443
    https://doi.org/10.18632/oncotarget.15245
  82. Boli Cheng, Jiang Zhu, Ting Yang, Si Wang, Huan Liu, Qionghui Wu, Xinhui Zhang, Jie Chen, Tingyu Li. Vitamin A deficiency exacerbates autism-like behaviors and abnormalities of the enteric nervous system in a valproic acid-induced rat model of autism. NeuroToxicology 2020;79:184
    https://doi.org/10.1016/j.neuro.2020.06.004
  83. Mellanie Fontes-Dutra, Gustavo Della-Flora Nunes, Júlio Santos-Terra, Walquíria Souza-Nunes, Guilherme Bauer-Negrini, Mauro Mozael Hirsch, Lily Green, Rudimar Riesgo, Carmem Gottfried, Victorio Bambini-Junior. Abnormal empathy-like pro-social behaviour in the valproic acid model of autism spectrum disorder. Behavioural Brain Research 2019;364:11
    https://doi.org/10.1016/j.bbr.2019.01.034
  84. Ramu Singh, Anglina Kisku, Haripriya Kungumaraj, Vini Nagaraj, Ajay Pal, Suneel Kumar, Kunjbihari Sulakhiya. Autism Spectrum Disorders: A Recent Update on Targeting Inflammatory Pathways with Natural Anti-Inflammatory Agents. Biomedicines 2023;11:115
    https://doi.org/10.3390/biomedicines11010115
  85. Robert F. Niescier, Yu-Chih Lin. The Potential Role of AMPA Receptor Trafficking in Autism and Other Neurodevelopmental Conditions. Neuroscience 2021;479:180
    https://doi.org/10.1016/j.neuroscience.2021.09.013
  86. Ann-Katrin Kraeuter, Riana Phillips, Zoltán Sarnyai. Ketogenic therapy in neurodegenerative and psychiatric disorders: From mice to men. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2020;101:109913
    https://doi.org/10.1016/j.pnpbp.2020.109913
  87. Syna Pervaiz Singha, Samreen Memon, Salman Ahmed Farsi Kazi, Ghulam Shah Nizamani. Gamma aminobutyric acid signaling disturbances and altered astrocytic morphology associated with Bisphenol A induced cognitive impairments in rat offspring. Birth Defects Research 2021;113:911
    https://doi.org/10.1002/bdr2.1886
  88. Ali K. Saad, Amal Akour, Abdulla Mahboob, Salahdein AbuRuz, Bassem Sadek. Role of Brain Modulators in Neurodevelopment: Focus on Autism Spectrum Disorder and Associated Comorbidities. Pharmaceuticals 2022;15:612
    https://doi.org/10.3390/ph15050612
  89. Stephanie Vuillermot, Wei Luan, Urs Meyer, Darryl Eyles. Vitamin D treatment during pregnancy prevents autism-related phenotypes in a mouse model of maternal immune activation. Molecular Autism 2017;8
    https://doi.org/10.1186/s13229-017-0125-0
  90. Erica Zamberletti, Marina Gabaglio, Daniela Parolaro. The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models. IJMS 2017;18:1916
    https://doi.org/10.3390/ijms18091916
  91. Hyun Jun Jang, Kyoung Ja Kwon, Chan Young Shin, Ga Seul Lee, Jeong Hee Moon, Tae Geol Lee, Sohee Yoon. Investigation of Phospholipid Differences in Valproic Acid-Induced Autistic Mouse Model Brain Using Mass Spectrometry Imaging. Metabolites 2023;13:178
    https://doi.org/10.3390/metabo13020178
  92. Hsiao-Ying Kuo, Fu-Chin Liu. Molecular Pathology and Pharmacological Treatment of Autism Spectrum Disorder-Like Phenotypes Using Rodent Models. Front. Cell. Neurosci. 2018;12
    https://doi.org/10.3389/fncel.2018.00422
  93. Viktor Román, Nika Adham, Andrew G. Foley, Lynsey Hanratty, Bence Farkas, Balázs Lendvai, Béla Kiss. Cariprazine alleviates core behavioral deficits in the prenatal valproic acid exposure model of autism spectrum disorder. Psychopharmacology 2021;238:2381
    https://doi.org/10.1007/s00213-021-05851-6
  94. Yusra Mansour, Randy J. Kulesza. The Untouchable Ventral Nucleus of the Trapezoid Body: Preservation of a Nucleus in an Animal Model of Autism Spectrum Disorder. Front. Integr. Neurosci. 2021;15
    https://doi.org/10.3389/fnint.2021.730439
  95. Kevin G. Bath, Tiare Pimentel. Effect of early postnatal exposure to valproate on neurobehavioral development and regional BDNF expression in two strains of mice. Epilepsy & Behavior 2017;70:110
    https://doi.org/10.1016/j.yebeh.2017.02.026
  96. Mellanie Fontes-Dutra, Júlio Santos-Terra, Iohanna Deckmann, Gustavo Brum Schwingel, Gustavo Della-Flora Nunes, Mauro Mozael Hirsch, Guilherme Bauer-Negrini, Rudimar S. Riesgo, Victorio Bambini-Júnior, Cecília Hedin-Pereira, Carmem Gottfried. Resveratrol Prevents Cellular and Behavioral Sensory Alterations in the Animal Model of Autism Induced by Valproic Acid. Front. Synaptic Neurosci. 2018;10
    https://doi.org/10.3389/fnsyn.2018.00009
  97. Hyang Yeon Kim, Yong-Jae Lee, Sun Jae Kim, Jung Dae Lee, Suhkmann Kim, Mee Jung Ko, Ji-Woon Kim, Chan Young Shin, Kyu-Bong Kim. Metabolomics profiling of valproic acid-induced symptoms resembling autism spectrum disorders using 1H NMR spectral analysis in rat model. Journal of Toxicology and Environmental Health, Part A 2022;85:1
    https://doi.org/10.1080/15287394.2021.1967821
  98. Ayat I. Samra, Ahmed S. Kamel, Dalaal M. Abdallah, Mai A. Abd El Fattah, Kawkab A. Ahmed, Hanan S. El-Abhar. Preclinical Evidence for the Role of the Yin/Yang Angiotensin System Components in Autism Spectrum Disorder: A Therapeutic Target of Astaxanthin. Biomedicines 2023;11:3156
    https://doi.org/10.3390/biomedicines11123156
  99. Catherine Hamilton, Ann Liebert, Vincent Pang, Pierre Magistretti, John Mitrofanis. Lights on for Autism: Exploring Photobiomodulation as an Effective Therapeutic Option. Neurology International 2022;14:884
    https://doi.org/10.3390/neurolint14040071
  100. Toshiya Matsushima, Takeshi Izumi, Giorgio Vallortigara. The domestic chick as an animal model of autism spectrum disorder: building adaptive social perceptions through prenatally formed predispositions. Front. Neurosci. 2024;18
    https://doi.org/10.3389/fnins.2024.1279947
  101. Abdoh Taleb, Wen Lin, Xiang Xu, Gang Zhang, Qi-Gang Zhou, Muhammad Naveed, Fan Meng, Kohji Fukunaga, Feng Han. Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomedicine & Pharmacotherapy 2021;137:111322
    https://doi.org/10.1016/j.biopha.2021.111322
  102. Nicole R. Zürcher, Erin C. Walsh, Rachel D. Phillips, Paul M. Cernasov, Chieh-En J. Tseng, Ayarah Dharanikota, Eric Smith, Zibo Li, Jessica L. Kinard, Joshua C. Bizzell, Rachel K. Greene, Daniel Dillon, Diego A. Pizzagalli, David Izquierdo-Garcia, Kinh Truong, David Lalush, Jacob M. Hooker, Gabriel S. Dichter. A simultaneous [11C]raclopride positron emission tomography and functional magnetic resonance imaging investigation of striatal dopamine binding in autism. Transl Psychiatry 2021;11
    https://doi.org/10.1038/s41398-020-01170-0
  103. E.J. Marijke Achterberg, Louk J.M.J. Vanderschuren. The neurobiology of social play behaviour: Past, present and future. Neuroscience & Biobehavioral Reviews 2023;152:105319
    https://doi.org/10.1016/j.neubiorev.2023.105319
  104. Mauro Mozael Hirsch, Iohanna Deckmann, Mellanie Fontes-Dutra, Guilherme Bauer-Negrini, Gustavo Della-Flora Nunes, Walquiria Nunes, Bruna Rabelo, Rudimar Riesgo, Rogerio Margis, Victorio Bambini-Junior, Carmem Gottfried. Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA. Food and Chemical Toxicology 2018;115:336
    https://doi.org/10.1016/j.fct.2018.02.061
  105. Abhishek Mishra, Rubal Singla, Rohit Kumar, AmitRaj Sharma, Rupa Joshi, Phulen Sarma, Gurjeet Kaur, Manisha Prajapat, Alka Bhatia, Bikash Medhi. Granulocyte Colony-Stimulating Factor Improved Core Symptoms of Autism Spectrum Disorder via Modulating Glutamatergic Receptors in the Prefrontal Cortex and Hippocampus of Rat Brains. ACS Chem. Neurosci. 2022;13:2942
    https://doi.org/10.1021/acschemneuro.2c00270
  106. Sweety Mehra, Aitizaz Ul Ahsan, Era Seth, Mani Chopra. Critical Evaluation of Valproic Acid-Induced Rodent Models of Autism: Current and Future Perspectives. J Mol Neurosci 2022;72:1259
    https://doi.org/10.1007/s12031-022-02033-7
  107. Naika Prince, Lucia N Peralta Marzal, Anastasia Markidi, Sabbir Ahmed, Youri Adolfs, R Jeroen Pasterkamp, Himanshu Kumar, Guus Roeselers, Johan Garssen, Aletta D Kraneveld, Paula Perez-Pardo. Prebiotic diet normalizes aberrant immune and behavioral phenotypes in a mouse model of autism spectrum disorder. Acta Pharmacol Sin 2024
    https://doi.org/10.1038/s41401-024-01268-x
  108. Rachel K. Greene, Erin Walsh, Maya G. Mosner, Gabriel S. Dichter. A potential mechanistic role for neuroinflammation in reward processing impairments in autism spectrum disorder. Biological Psychology 2019;142:1
    https://doi.org/10.1016/j.biopsycho.2018.12.008
  109. Rehab Abdel Hameed, Emad K. Ahmed, Asmaa A. Mahmoud, Azza A. Atef. G protein-coupled estrogen receptor (GPER) selective agonist G1 attenuates the neurobehavioral, molecular and biochemical alterations induced in a valproic acid rat model of autism. Life Sciences 2023;328:121860
    https://doi.org/10.1016/j.lfs.2023.121860
  110. Elisa Maria Guimarães-Souza, Christina Joselevitch, Luiz Roberto G. Britto, Silvana Chiavegatto. Retinal alterations in a pre-clinical model of an autism spectrum disorder. Molecular Autism 2019;10
    https://doi.org/10.1186/s13229-019-0270-8
  111. Bruna Lotufo Denucci, Larissa Silva de Lima, Isabela Ferreira Lima Mota, Juliana Rocha Madureira Azevedo, Letícia Germino Veras, João Victor Montenegro Luzardo Bicca, Bruna de Miranda Santana, Gabriela Beserra Pinheiro, Gabriela Gonçalves Coelho, Márcia Renata Mortari. Current knowledge, challenges, new perspectives of the study, and treatments of Autism Spectrum Disorder. Reproductive Toxicology 2021;106:82
    https://doi.org/10.1016/j.reprotox.2021.10.010
  112. Tamás Spisák, Viktor Román, Edit Papp, Rita Kedves, Katalin Sághy, Cecília Katalin Csölle, Anita Varga, Dávid Gajári, Gabriella Nyitrai, Zsófia Spisák, Zsigmond Tamás Kincses, György Lévay, Balázs Lendvai, András Czurkó. Purkinje cell number-correlated cerebrocerebellar circuit anomaly in the valproate model of autism. Sci Rep 2019;9
    https://doi.org/10.1038/s41598-019-45667-1
  113. Sara Haratizadeh, Mahdieh Parvan, Somayeh Mohammadi, Mohammad Shabani, Masoumeh Nozari. An overview of modeling and behavioral assessment of autism in the rodent. Intl J of Devlp Neuroscience 2021;81:221
    https://doi.org/10.1002/jdn.10096
  114. Sara Schiavi, Piergiorgio La Rosa, Sara Petrillo, Emilia Carbone, Jessica D'Amico, Fiorella Piemonte, Viviana Trezza. N-Acetylcysteine Mitigates Social Dysfunction in a Rat Model of Autism Normalizing Glutathione Imbalance and the Altered Expression of Genes Related to Synaptic Function in Specific Brain Areas. Front. Psychiatry 2022;13
    https://doi.org/10.3389/fpsyt.2022.851679
  115. Bruna da Silveira de Mattos, Mayara Sandrielly Pereira Soares, Luiza Spohr, Nathalia Stark Pedra, Fernanda Cardoso Teixeira, Anita Avila de Souza, Francieli Moro Stefanello, Jucimara Baldissarelli, Giovana Duzzo Gamaro, Roselia Maria Spanevello. Quercetin prevents alterations of behavioral parameters, delta‐aminolevulinic dehydratase activity, and oxidative damage in brain of rats in a prenatal model of autism. Intl J of Devlp Neuroscience 2020;80:287
    https://doi.org/10.1002/jdn.10025
  116. Macy Payne, Ivina Mali, Zach E McKinnell, Lisa Vangsness, Tej B. Shrestha, Stefan H Bossmann, Bethany Plakke. Increased volumes of lobule VI in a valproic acid model of autism are associated with worse set-shifting performance in male Long-Evan rats. Brain Research 2021;1765:147495
    https://doi.org/10.1016/j.brainres.2021.147495
  117. Reza Ghahremani, Reihaneh Mohammadkhani, Iraj Salehi, Seyed Asaad Karimi, Mohammad Zarei. Sex Differences in Spatial Learning and Memory in Valproic Acid Rat Model of Autism: Possible Beneficial Role of Exercise Interventions. Front. Behav. Neurosci. 2022;16
    https://doi.org/10.3389/fnbeh.2022.869792
  118. Mohamed A Hamzawy, Yasmin B El-Ghandour, Sekena H Abdel-Aziem, Zoba H Ali. Leptin and camel milk abate oxidative stress status, genotoxicity induced in valproic acid rat model of autism. Int J Immunopathol Pharmacol 2018;32:205873841878551
    https://doi.org/10.1177/2058738418785514
  119. Rasha O. Elesawy, Omnia S. El-Deeb, Amira K. Eltokhy, Heba M. Arakeep, Dina A. Ali, Sanad S. Elkholy, Ahmed M. Kabel. Postnatal baicalin ameliorates behavioral and neurochemical alterations in valproic acid-induced rodent model of autism: The possible implication of sirtuin-1/mitofusin-2/ Bcl-2 pathway. Biomedicine & Pharmacotherapy 2022;150:112960
    https://doi.org/10.1016/j.biopha.2022.112960
  120. Zahra Hosseindokht, Shima Davoudi, Mona Rahdar, Mahyar Janahmadi, Mohammadreza Kolahdouz, Pezhman Sasanpour. Photoacoustic viscoelasticity assessment of prefrontal cortex and cerebellum in normal and prenatal valproic acid-exposed rats. Photoacoustics 2024;36:100590
    https://doi.org/10.1016/j.pacs.2024.100590
  121. Mohamed Jaber. Genetic and environmental mouse models of autism reproduce the spectrum of the disease. J Neural Transm 2023;130:425
    https://doi.org/10.1007/s00702-022-02555-9
  122. Valentine Turpin, Maud Schaffhauser, Mathieu Thabault, Agnès Aubert, Corinne Joffre, Eric Balado, Jean-Emmanuel Longueville, Maureen Francheteau, Christophe Burucoa, Maxime Pichon, Sophie Layé, Mohamed Jaber. Mice prenatally exposed to valproic acid do not show autism-related disorders when fed with polyunsaturated fatty acid-enriched diets. Sci Rep 2023;13
    https://doi.org/10.1038/s41598-023-38423-z
  123. Luana Carvalho Cezar, Thiago Berti Kirsten, Caio Cesar Navarrete da Fonseca, Ana Paula Nascimento de Lima, Maria Martha Bernardi, Luciano Freitas Felicio. Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018;84:173
    https://doi.org/10.1016/j.pnpbp.2018.02.008
  124. Kyong-Oh Shin, Debra A. Crumrine, Sungeun Kim, Yerin Lee, Bogyeong Kim, Katrina Abuabara, Chaehyeong Park, Yoshikazu Uchida, Joan S. Wakefield, Jason M. Meyer, Sekyoo Jeong, Byeong Deog Park, Kyungho Park, Peter M. Elias. Phenotypic overlap between atopic dermatitis and autism. BMC Neurosci 2021;22
    https://doi.org/10.1186/s12868-021-00645-0
  125. Jian-Quan Yang, Chao-Hua Yang, Bao-Qi Yin. Combined the GABA-A and GABA-B receptor agonists attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Behavioural Brain Research 2021;403:113094
    https://doi.org/10.1016/j.bbr.2020.113094
  126. Yusra Mansour, Alyson Burchell, Randy Kulesza. Abnormal vestibular brainstem structure and function in an animal model of autism spectrum disorder. Brain Research 2022;1793:148056
    https://doi.org/10.1016/j.brainres.2022.148056
  127. Rida Nisar, Zehra Batool, Saida Haider. Electric foot-shock induces neurobehavioral aberrations due to imbalance in oxidative status, stress hormone, neurochemical profile, and irregular cortical-beta wave pattern in rats: A validated animal model of anxiety. Life Sciences 2023;323:121707
    https://doi.org/10.1016/j.lfs.2023.121707
  128. Fei Huang, Xiaoqin Chen, Xiangzhi Jiang, Juan Niu, Cuicui Cui, Zhenli Chen, Jun Sun. Betaine ameliorates prenatal valproic‐acid‐induced autism‐like behavioral abnormalities in mice by promoting homocysteine metabolism. Psychiatry Clin Neurosci 2019;73:317
    https://doi.org/10.1111/pcn.12833
  129. Mishra Abhishek, Singla Rubal, Kumar Rohit, Joshi Rupa, Sarma Phulen, Kaur Gurjeet, Sharma Amit Raj, Prajapat Manisha, Bhatia Alka, Pallola Ramprasad, Medhi Bikash. Neuroprotective effect of the standardised extract of Bacopa monnieri (BacoMind) in valproic acid model of autism spectrum disorder in rats. Journal of Ethnopharmacology 2022;293:115199
    https://doi.org/10.1016/j.jep.2022.115199
  130. William E. DeCoteau, Adam E. Fox. Timing and Intertemporal Choice Behavior in the Valproic Acid Rat Model of Autism Spectrum Disorder. J Autism Dev Disord 2022;52:2414
    https://doi.org/10.1007/s10803-021-05129-y
  131. Gabriela J. Martins. Autism Spectrum Disorders in Adults. 2022.
    https://doi.org/10.1007/978-3-319-42713-3_2
  132. Chiharu Tsuji, Tomoaki. Fujisaku, Takahiro Tsuji. Oxytocin ameliorates maternal separation‐induced ultrasonic vocalisation calls in mouse pups prenatally exposed to valproic acid. J Neuroendocrinology 2020;32
    https://doi.org/10.1111/jne.12850
  133. Mohamed Z. Habib, Esraa M. Elnahas, Yasmin M. Aboul-Ela, Mai A. Ebeid, Marwa Tarek, Doaa R. Sadek, Eman A. Negm, Dina A. Abdelhakam, Sawsan Aboul-Fotouh. Risperidone impedes glutamate excitotoxicity in a valproic acid rat model of autism: Role of ADAR2 in AMPA GluA2 RNA editing. European Journal of Pharmacology 2023;955:175916
    https://doi.org/10.1016/j.ejphar.2023.175916
  134. Kanishk Luhach, Bhagwat Singh, Himanshu Aggarwal, Bhupesh Sharma. PDE3 inhibition by cilostazol attenuated developmental hyperserotonemia induced behavioural and biochemical deficits in a rat model of autism spectrum disorder. Research in Autism Spectrum Disorders 2022;99:102052
    https://doi.org/10.1016/j.rasd.2022.102052
  135. Fatemeh Amini, Hossein Amini-Khoei, Sara Haratizadeh, Mohammad Setayesh, Mohsen Basiri, Mahboobeh Raeiszadeh, Masoumeh Nozari. Hydroalcoholic extract of Passiflora incarnata improves the autistic-like behavior and neuronal damage in a valproic acid-induced rat model of autism. Journal of Traditional and Complementary Medicine 2023;13:315
    https://doi.org/10.1016/j.jtcme.2023.02.005
  136. Lauren L. Orefice. Peripheral Somatosensory Neuron Dysfunction: Emerging Roles in Autism Spectrum Disorders. Neuroscience 2020;445:120
    https://doi.org/10.1016/j.neuroscience.2020.01.039
  137. Pranshul Sethi, Tanu Chaudhary, Tejesvi Mishra, Aradhana Prajapati, Sumit Kumar. Nutrition and Psychiatric Disorders. 2020.
    https://doi.org/10.1007/978-981-19-5021-6_16
  138. Rhys H Thomas. Valproate: life-saving, life-changing. Clinical Medicine 2018;18:s1
    https://doi.org/10.7861/clinmedicine.18-2-s1
  139. Ryan Zimmerman, Raina Patel, Amanda Smith, Julio Pasos, Randy J. Kulesza. Repeated Prenatal Exposure to Valproic Acid Results in Auditory Brainstem Hypoplasia and Reduced Calcium Binding Protein Immunolabeling. Neuroscience 2018;377:53
    https://doi.org/10.1016/j.neuroscience.2018.02.030
  140. Jean-Baptiste Fini, Michelle Leemans, Barbara A. Demeneix. Autism 360°. 2018.
    https://doi.org/10.1016/B978-0-12-818466-0.00004-6
  141. Jelena Podgorac, Slobodan Sekulić, Branka Petković, Gordana Stojadinović, Ljiljana Martać, Vesna Pešić. The influence of continuous prenatal exposure to valproic acid on physical, nociceptive, emotional and psychomotor responses during adolescence in mice: Dose-related effects within sexes. Front. Behav. Neurosci. 2022;16
    https://doi.org/10.3389/fnbeh.2022.982811
  142. Ryan Zimmerman, Amanda Smith, Tatiana Fech, Yusra Mansour, Randy J. Kulesza. In utero exposure to valproic acid disrupts ascending projections to the central nucleus of the inferior colliculus from the auditory brainstem. Exp Brain Res 2020;238:551
    https://doi.org/10.1007/s00221-020-05729-7
  143. Kumari Anshu, Ajay Kumar Nair, U.D. Kumaresan, Bindu M. Kutty, Shoba Srinath, T. Rao Laxmi. Altered attentional processing in male and female rats in a prenatal valproic acid exposure model of autism spectrum disorder. Autism Research 2017;10:1929
    https://doi.org/10.1002/aur.1852
  144. K. Fereshetyan, K. Yenkoyan. Autism-like behaviour of young rats prenatally exposed to valproic acid. European Neuropsychopharmacology 2019;29:S441
    https://doi.org/10.1016/j.euroneuro.2018.11.664
  145. Mellanie Fontes‐Dutra, Joseane Righes Marafiga, Júlio Santos‐Terra, Iohanna Deckmann, Gustavo Brum Schwingel, Bruna Rabelo, Rafael Kazmierzak de Moraes, Marília Rockenbach, Mayara Vendramin Pasquetti, Carmem Gottfried, Maria Elisa Calcagnotto. GABAergic synaptic transmission and cortical oscillation patterns in the primary somatosensory area of a valproic acid rat model of autism spectrum disorder. Eur J of Neuroscience 2023;57:527
    https://doi.org/10.1111/ejn.15893
  146. Bartolomeo Bertolino, Rosalia Crupi, Daniela Impellizzeri, Giuseppe Bruschetta, Marika Cordaro, Rosalba Siracusa, Emanuela Esposito, Salvatore Cuzzocrea. Beneficial Effects of Co‐Ultramicronized Palmitoylethanolamide/Luteolin in a Mouse Model of Autism and in a Case Report of Autism. CNS Neurosci Ther 2017;23:87
    https://doi.org/10.1111/cns.12648
  147. Nermin Eissa, Karthikkumar Venkatachalam, Petrilla Jayaprakash, Markus Falkenstein, Mariam Dubiel, Annika Frank, David Reiner-Link, Holger Stark, Bassem Sadek. The Multi-Targeting Ligand ST-2223 with Histamine H3 Receptor and Dopamine D2/D3 Receptor Antagonist Properties Mitigates Autism-Like Repetitive Behaviors and Brain Oxidative Stress in Mice. IJMS 2021;22:1947
    https://doi.org/10.3390/ijms22041947
  148. Amit Raj Sharma, Gitika Batra , Lokesh Saini, Saurabh Sharma, Abhishek Mishra, Rubal Singla, Ashutosh Singh , Rahul Soloman Singh, Ashish Jain , Seema Bansal, Manish Modi, Bikash Medhi. Valproic Acid and Propionic Acid Modulated Mechanical Pathways Associated with Autism Spectrum Disorder at Prenatal and Neonatal Exposure. CNSNDDT 2022;21:399
    https://doi.org/10.2174/1871527320666210806165430
  149. Ann Galizio, Amy L. Odum. Reinforced behavioral variability in the valproate rat model of autism spectrum disorder. J Exper Analysis Behavior 2022;117:576
    https://doi.org/10.1002/jeab.760
  150. Madalina Andreea Robea, Alin Ciobica, Alexandrina-Stefania Curpan, Gabriel Plavan, Stefan Strungaru, Radu Lefter, Mircea Nicoara. Preliminary Results Regarding Sleep in a Zebrafish Model of Autism Spectrum Disorder. Brain Sciences 2021;11:556
    https://doi.org/10.3390/brainsci11050556
  151. Federica Filice, Emanuel Lauber, Karl Jakob Vörckel, Markus Wöhr, Beat Schwaller. 17-β estradiol increases parvalbumin levels in Pvalb heterozygous mice and attenuates behavioral phenotypes with relevance to autism core symptoms. Molecular Autism 2018;9
    https://doi.org/10.1186/s13229-018-0199-3
  152. Soon-Ae Kim, Jung-Hoon Chai, Eun-Hye Jang. Prenatal Trimethyltin Exposure Induces Long-Term DNA Methylation Changes in the Male Mouse Hippocampus. IJMS 2021;22:8009
    https://doi.org/10.3390/ijms22158009
  153. Syna Pervaiz Singha, Samreen Memon, Umbreen Bano, Amir Derick Isaac, Muhammad Yaqoob Shahani. Evaluation of p21 expression and related autism‐like behavior in Bisphenol‐A exposed offspring of Wistar albino rats. Birth Defects Research 2022;114:536
    https://doi.org/10.1002/bdr2.2022