en Experimental Neurobiology

Cited by CrossRef (29)

  1. Jiyun Choi, Jinsu Hwang, Mahesh Ramalingam, Han-Seong Jeong, Sujeong Jang. Effects of HDAC inhibitors on neuroblastoma SH-SY5Y cell differentiation into mature neurons via the Wnt signaling pathway. BMC Neurosci 2023;24
    https://doi.org/10.1186/s12868-023-00798-0
  2. Martina Mazzocchi, Louise M Collins, Aideen M. Sullivan, Gerard W. O'Keeffe. The class II histone deacetylases as therapeutic targets for Parkinson’s disease. 2020;4
    https://doi.org/10.1042/NS20200001
  3. Viviana Brembati, Gaia Faustini, Francesca Longhena, Arianna Bellucci. Alpha synuclein post translational modifications: potential targets for Parkinson’s disease therapy?. Front. Mol. Neurosci. 2023;16
    https://doi.org/10.3389/fnmol.2023.1197853
  4. Dhirendra Singh, Sumeet Gupta, Inderjeet Verma, Mohamed A. Morsy, Anroop B. Nair, Al-Shaimaa F. Ahmed. Hidden pharmacological activities of valproic acid: A new insight. Biomedicine & Pharmacotherapy 2021;142:112021
    https://doi.org/10.1016/j.biopha.2021.112021
  5. Veronica Bisagno, Maria Alejandra Bernardi, Sara Sanz Blasco, Francisco J. Urbano, Edgar Garcia-Rill. Differential effects of HDAC inhibitors on PPN oscillatory activity in vivo. Neuropharmacology 2020;165:107922
    https://doi.org/10.1016/j.neuropharm.2019.107922
  6. Yan Wang, Guangfei Wang, Jie Tao, Xiaoxia Li, Lan Hu, Qin Li, Jinmiao Lu, Youbin Li, Zhiping Li. Autophagy associated with the efficacy of valproic acid in PTZ-induced epileptic rats. Brain Research 2020;1745:146923
    https://doi.org/10.1016/j.brainres.2020.146923
  7. Balapal S Basavarajappa, Shivakumar Subbanna. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024;16:331
    https://doi.org/10.2217/epi-2023-0428
  8. Gabriella MacDougall, Logan Y. Brown, Boris Kantor, Ornit Chiba-Falek. The Path to Progress Preclinical Studies of Age-Related Neurodegenerative Diseases: A Perspective on Rodent and hiPSC-Derived Models. Molecular Therapy 2021;29:949
    https://doi.org/10.1016/j.ymthe.2021.01.001
  9. Khalid A. El-Saiy, Rabab H. Sayed, Ayman E. El-Sahar, Esraa A. Kandil. Modulation of histone deacetylase, the ubiquitin proteasome system, and autophagy underlies the neuroprotective effects of venlafaxine in a rotenone-induced Parkinson's disease model in rats. Chemico-Biological Interactions 2022;354:109841
    https://doi.org/10.1016/j.cbi.2022.109841
  10. Sabrina Petralla, Francesca De Chirico, Andrea Miti, Ottavia Tartagni, Francesca Massenzio, Eleonora Poeta, Marco Virgili, Giampaolo Zuccheri, Barbara Monti. Epigenetics and Communication Mechanisms in Microglia Activation with a View on Technological Approaches. Biomolecules 2021;11:306
    https://doi.org/10.3390/biom11020306
  11. I. F. Duarte, J. Caio, M. F. Moedas, L. A. Rodrigues, A. P. Leandro, I. A. Rivera, M. F. B. Silva. Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Cell. Mol. Life Sci. 2021;78:7451
    https://doi.org/10.1007/s00018-021-03996-3
  12. Sai Teja Meka, Sree Lalitha Bojja, Gautam Kumar, Sumit Raosaheb Birangal, C. Mallikarjuna Rao. Novel HDAC inhibitors provide neuroprotection in MPTP-induced Parkinson's disease model of rats. European Journal of Pharmacology 2023;959:176067
    https://doi.org/10.1016/j.ejphar.2023.176067
  13. Natalia A. Shnayder, Violetta V. Grechkina, Aiperi K. Khasanova, Elena N. Bochanova, Evgenia A. Dontceva, Marina M. Petrova, Azat R. Asadullin, German A. Shipulin, Kuanysh S. Altynbekov, Mustafa Al-Zamil, Regina F. Nasyrova. Therapeutic and Toxic Effects of Valproic Acid Metabolites. Metabolites 2023;13:134
    https://doi.org/10.3390/metabo13010134
  14. Katsuya Hirata, Toshihiko Nambara, Keiji Kawatani, Nobutoshi Nawa, Hidetaka Yoshimatsu, Haruna Kusakabe, Kimihiko Banno, Ken Nishimura, Manami Ohtaka, Mahito Nakanishi, Hidetoshi Taniguchi, Hitomi Arahori, Kazuko Wada, Keiichi Ozono, Yasuji Kitabatake. 4-Phenylbutyrate ameliorates apoptotic neural cell death in Down syndrome by reducing protein aggregates. Sci Rep 2020;10
    https://doi.org/10.1038/s41598-020-70362-x
  15. Marjan Enshaeieh, Geita Saadatnia, Jalal Babaie, Majid Golkar, Samira Choopani, Mohammad Sayyah. Valproic Acid Inhibits Chronic Toxoplasma Infection and Associated Brain Inflammation in Mice . Antimicrob Agents Chemother 2021;65
    https://doi.org/10.1128/AAC.01003-21
  16. Thomas Musacchio, Jing Yin, Fabian Kremer, James B. Koprich, Jonathan M. Brotchie, Jens Volkmann, Chi Wang Ip. Temporal, spatial and molecular pattern of dopaminergic neurodegeneration in the AAV-A53T α-synuclein rat model of Parkinson’s disease. Behavioural Brain Research 2022;432:113968
    https://doi.org/10.1016/j.bbr.2022.113968
  17. Giovanni Dothel, Maria Raffaella Barbaro, Aldo Di Vito, Gloria Ravegnini, Francesca Gorini, Sarah Monesmith, Emma Coschina, Eva Benuzzi, Daniele Fuschi, Marta Palombo, Francesca Bonomini, Fabiana Morroni, Patrizia Hrelia, Giovanni Barbara, Sabrina Angelini. New insights into irritable bowel syndrome pathophysiological mechanisms: contribution of epigenetics. J Gastroenterol 2023;58:605
    https://doi.org/10.1007/s00535-023-01997-6
  18. Seth Mikaye Monayo, Xin Liu. The Prospective Application of Melatonin in Treating Epigenetic Dysfunctional Diseases. Front. Pharmacol. 2022;13
    https://doi.org/10.3389/fphar.2022.867500
  19. Thanga Harini Sundaramoorthy, Isabel Castanho. The Neuroepigenetic Landscape of Vertebrate and Invertebrate Models of Neurodegenerative Diseases. Genet Epigenet 2022;15:251686572211358
    https://doi.org/10.1177/25168657221135848
  20. Rui Wang, Hongyang Sun, Guanghui Wang, Haigang Ren. Imbalance of Lysine Acetylation Contributes to the Pathogenesis of Parkinson’s Disease. IJMS 2020;21:7182
    https://doi.org/10.3390/ijms21197182
  21. Rohan Gupta, Rashmi K. Ambasta, Pravir Kumar. . 2020.
    https://doi.org/10.1016/bs.acc.2020.09.004
  22. Adelaida Hernaiz, Janne Markus Toivonen, Rosa Bolea, Inmaculada Martín-Burriel. Epigenetic Changes in Prion and Prion-like Neurodegenerative Diseases: Recent Advances, Potential as Biomarkers, and Future Perspectives. IJMS 2022;23:12609
    https://doi.org/10.3390/ijms232012609
  23. Ayesha Safdar, Fatima Ismail. A comprehensive review on pharmacological applications and drug-induced toxicity of valproic acid. Saudi Pharmaceutical Journal 2023;31:265
    https://doi.org/10.1016/j.jsps.2022.12.001
  24. Faith Dickerson, Dhananjay Vaidya, Yisi Liu, Robert Yolken. Levels of Matrix Metalloproteinase 9 Are Elevated in Persons With Schizophrenia or Bipolar Disorder: The Role of Modifiable Factors. Biological Psychiatry Global Open Science 2023;3:766
    https://doi.org/10.1016/j.bpsgos.2023.02.007
  25. James R. Tribble, Elizabeth Kastanaki, A. Berşan Uslular, Carola Rutigliani, Tim J. Enz, Pete A. Williams. Valproic Acid Reduces Neuroinflammation to Provide Retinal Ganglion Cell Neuroprotection in the Retina Axotomy Model. Front. Cell Dev. Biol. 2022;10
    https://doi.org/10.3389/fcell.2022.903436
  26. Caner Günaydin, Z Betül Çelik, S Sırrı Bilge, Bahattin Avci, Nurten Kara. SAHA attenuates rotenone-induced toxicity in primary microglia and HT-22 cells. Toxicol Ind Health 2021;37:23
    https://doi.org/10.1177/0748233720979278
  27. Chaoyi Li, Jie Ren, Mengfei Zhang, Huakun Wang, Fang Yi, Junjiao Wu, Yu Tang. The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases. Cell. Mol. Life Sci. 2022;79
    https://doi.org/10.1007/s00018-022-04536-3
  28. Rohan Gupta, Pravir Kumar. CREB1K292 and HINFPK330 as Putative Common Therapeutic Targets in Alzheimer’s and Parkinson’s Disease. ACS Omega 2021;6:35780
    https://doi.org/10.1021/acsomega.1c05827
  29. Yan Li, Zhicheng Gu, Shuxian Lin, Lei Chen, Valentina Dzreyan, Moez Eid, Svetlana Demyanenko, Bin He. Histone Deacetylases as Epigenetic Targets for Treating Parkinson’s Disease. Brain Sciences 2022;12:672
    https://doi.org/10.3390/brainsci12050672