en Experimental Neurobiology

Cited by CrossRef (24)

  1. Sanghyun Kim, Minhyo Kim, Junki Kang, SeungJe Son, Dong Hwan Kim. Design and Control of Wire-driven Flexible Robot Following Human Arm Gestures. J. Korea Robot. Soc. 2019;14:50
    https://doi.org/10.7746/jkros.2019.14.1.050
  2. Yutaro Hiyoshi, Yuta Murai, Yoshiko Yabuki, Kenichi Takahana, Soichiro Morishita, Yinlai Jiang, Shunta Togo, Shinichiro Takayama, Hiroshi Yokoi. Development of a Parent Wireless Assistive Interface for Myoelectric Prosthetic Hands for Children. Front. Neurorobot. 2018;12
    https://doi.org/10.3389/fnbot.2018.00048
  3. Evan Campbell, Angkoon Phinyomark, Erik Scheme. Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity. Sensors 2020;20:1613
    https://doi.org/10.3390/s20061613
  4. . .
    https://doi.org/
  5. Nicolò Celadon, Strahinja Došen, Iris Binder, Paolo Ariano, Dario Farina. Proportional estimation of finger movements from high-density surface electromyography. J NeuroEngineering Rehabil 2016;13
    https://doi.org/10.1186/s12984-016-0172-3
  6. Jongin Kim, Dongrae Cho, Kwang Lee, Boreom Lee. A Real-Time Pinch-to-Zoom Motion Detection by Means of a Surface EMG-Based Human-Computer Interface. Sensors 2014;15:394
    https://doi.org/10.3390/s150100394
  7. Peidong Liang, Chenguang Yang, Ning Wang, Ruifeng Li. A Discrete-Time Algorithm for Stiffness Extraction from sEMG and Its Application in Antidisturbance Teleoperation. Discrete Dynamics in Nature and Society 2016;2016:1
    https://doi.org/10.1155/2016/6897030
  8. Nabasmita Phukan, Nayan M. Kakoty, Prastuti Shivam, John Q. Gan. Finger movements recognition using minimally redundant features of wavelet denoised EMG. Health Technol. 2019;9:579
    https://doi.org/10.1007/s12553-019-00338-z
  9. Maria V. Arteaga, Jenny C. Castiblanco, Ivan F. Mondragon, Julian D. Colorado, Catalina Alvarado-Rojas. EMG-driven hand model based on the classification of individual finger movements. Biomedical Signal Processing and Control 2020;58:101834
    https://doi.org/10.1016/j.bspc.2019.101834
  10. Farshad Khadivar, Vincent Mendez, Carolina Correia, Iason Batzianoulis, Aude Billard, Silvestro Micera. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses. J. Neural Eng. 2022;19:066024
    https://doi.org/10.1088/1741-2552/aca35f
  11. Kaur Amanpreet. Machine learning-based novel approach to classify the shoulder motion of upper limb amputees. Biocybernetics and Biomedical Engineering 2019;39:857
    https://doi.org/10.1016/j.bbe.2019.07.007
  12. . .
    https://doi.org/
  13. . .
    https://doi.org/
  14. . .
    https://doi.org/
  15. . .
    https://doi.org/
  16. P. González-Zamora, Victor H. Benitez, Jesus Pacheco. A feature-based processing framework for real-time implementation of muscle fatigue measurement. Cluster Comput 2023;26:385
    https://doi.org/10.1007/s10586-021-03437-7
  17. Kiwon Rhee, Hyun-Chool Shin. Electromyogram-based hand gesture recognition robust to various arm postures. International Journal of Distributed Sensor Networks 2018;14:155014771879075
    https://doi.org/10.1177/1550147718790751
  18. Yuni Teh, Levi J. Hargrove. Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 2020;28:1605
    https://doi.org/10.1109/TNSRE.2020.2991643
  19. . .
    https://doi.org/
  20. Ruben Ruiz-Mateos Serrano, Ana Aguzin, Eleni Mitoudi-Vagourdi, Xudong Tao, Tobias E. Naegele, Amy T. Jin, Naroa Lopez-Larrea, Matías L. Picchio, Marco Vinicio Alban-Paccha, Roque J. Minari, David Mecerreyes, Antonio Dominguez-Alfaro, George G. Malliaras. 3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles. Biomaterials 2024;310:122624
    https://doi.org/10.1016/j.biomaterials.2024.122624
  21. Tanaya Das, Lakhyajit Gohain, Nayan M Kakoty, MB Malarvili, Prihartini Widiyanti, Gajendra Kumar. Hierarchical approach for fusion of electroencephalography and electromyography for predicting finger movements and kinematics using deep learning. Neurocomputing 2023;527:184
    https://doi.org/10.1016/j.neucom.2023.01.061
  22. . .
    https://doi.org/
  23. Andrei Lukyanchikov, Alexei Melnikov, Oleg Lukyanchikov, E. Nikulchev, G. Bubnov. Algorithms for classification of a single channel EMG signal for human-computer interaction. ITM Web Conf. 2018;18:02001
    https://doi.org/10.1051/itmconf/20181802001
  24. . .
    https://doi.org/