Cited by CrossRef (46)
- David A. MacLeod, Herve Rhinn, Tomoki Kuwahara, Ari Zolin, Gilbert Di Paolo, Brian D. McCabe, Karen S. Marder, Lawrence S. Honig, Lorraine N. Clark, Scott A. Small, Asa Abeliovich. RAB7L1 Interacts with LRRK2 to Modify Intraneuronal Protein Sorting and Parkinson’s Disease Risk. Neuron 2013;77:425
- Yi Cui, Zhe Yang, Rohan D. Teasdale. The functional roles of retromer in Parkinson's disease. FEBS Letters 2018;592:1096
- Hye Jin Yun, Hyejung Kim, Inhwa Ga, Hakjin Oh, Dong Hwan Ho, Jiyoung Kim, Hyemyung Seo, Ilhong Son, Wongi Seol. An early endosome regulator, Rab5b, is an LRRK2 kinase substrate. 2015;157:485
- Tatou Iseki, Yuzuru Imai, Nobutaka Hattori. Is Glial Dysfunction the Key Pathogenesis of LRRK2-Linked Parkinson’s Disease?. Biomolecules 2023;13:178
- Joseph M. Thomas, Tianxia Li, Wei Yang, Fengtian Xue, Paul S. Fishman, Wanli W. Smith. 68 and FX2149 Attenuate Mutant LRRK2-R1441C-Induced Neural Transport Impairment. Front. Aging Neurosci. 2017;8
- Catharine E. Krebs, Siamak Karkheiran, James C. Powell, Mian Cao, Vladimir Makarov, Hossein Darvish, Gilbert Di Paolo, Ruth H. Walker, Gholam Ali Shahidi, Joseph D. Buxbaum, Pietro De Camilli, Zhenyu Yue, Coro Paisán‐Ruiz.
The Sac1 Domain of
SYNJ
1
Identified Mutated in a Family with Early‐Onset Progressive
P
arkinsonism with Generalized Seizures
. Human Mutation 2013;34:1200
- Tadayuki Komori, Tomoki Kuwahara. An Update on the Interplay between LRRK2, Rab GTPases and Parkinson’s Disease. Biomolecules 2023;13:1645
- Eun-Mi Hur, Eun-Hae Jang, Ga Ram Jeong, Byoung Dae Lee. LRRK2 and membrane trafficking: nexus of Parkinson's disease. BMB Rep. 2019;52:533
- Karina Häbig, Sandra Gellhaar, Birgit Heim, Verena Djuric, Florian Giesert, Wolfgang Wurst, Carolin Walter, Thomas Hentrich, Olaf Riess, Michael Bonin. LRRK2 guides the actin cytoskeleton at growth cones together with ARHGEF7 and Tropomyosin 4. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2013;1832:2352
- Nicolas Dzamko, Dominic B. Rowe, Glenda M. Halliday. Increased peripheral inflammation in asymptomatic leucine‐rich repeat kinase 2 mutation carriers. Movement Disorders 2016;31:889
- Tatsunori Maekawa, Toshikuni Sasaoka, Sadahiro Azuma, Takafumi Ichikawa, Heather L. Melrose, Matthew J. Farrer, Fumiya Obata. Leucine-rich repeat kinase 2 (LRRK2) regulates α-synuclein clearance in microglia. BMC Neurosci 2016;17
- Josefa Zaldivar-Diez, Lingling Li, Ana M. Garcia, Wen-Ning Zhao, Cristina Medina-Menendez, Stephen. J. Haggarty, Carmen Gil, Aixa V. Morales, Ana Martinez. Benzothiazole-Based LRRK2 Inhibitors as Wnt Enhancers and Promoters of Oligodendrocytic Fate. J. Med. Chem. 2020;63:2638
- Rossana Migheli, Maria Grazia Del Giudice, Ylenia Spissu, Giovanna Sanna, Yulan Xiong, Ted M. Dawson, Valina L. Dawson, Manuela Galioto, Gaia Rocchitta, Alice Biosa, Pier Andrea Serra, Maria Teresa Carri, Claudia Crosio, Ciro Iaccarino, Patrick Lewis. LRRK2 Affects Vesicle Trafficking, Neurotransmitter Extracellular Level and Membrane Receptor Localization. PLoS ONE 2013;8:e77198
- Jing Zhang, Jie Li, Pan You, Haitian Jiang, Yanjun Liu, Daobin Han, Meiqi Liu, Hui Yu, Bo Su. Mice with the Rab10 T73V mutation exhibit anxiety-like behavior and alteration of neuronal functions in the striatum. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2023;1869:166641
- Alice Filippini, Massimo Gennarelli, Isabella Russo. α-Synuclein and Glia in Parkinson’s Disease: A Beneficial or a Detrimental Duet for the Endo-Lysosomal System?. Cell Mol Neurobiol 2019;39:161
- Soham Jagtap, Chandrakanta Potdar, Ravi Yadav, Pramod Kumar Pal, Indrani Datta. Dopaminergic Neurons Differentiated from LRRK2 I1371V-Induced Pluripotent Stem Cells Display a Lower Yield, α-Synuclein Pathology, and Functional Impairment. ACS Chem. Neurosci. 2022;13:2632
- Julien Falk, Filip A. Konopacki, Krishna H. Zivraj, Christine E. Holt. Rab5 and Rab4 Regulate Axon Elongation in theXenopusVisual System. J. Neurosci. 2014;34:373
- Wanyun Li, Cong Liu, Zilan Huang, Lei Shi, Chuanqi Zhong, Wenwen Zhou, Peipei Meng, Zhenyu Li, Shengyu Wang, Fanghong Luo, Jianghua Yan, Ting Wu. AKR1B10 negatively regulates autophagy through reducing GAPDH upon glucose starvation in colon cancer. 2021;134
- A. Raquel Esteves, Russell H. Swerdlow, Sandra M. Cardoso. LRRK2, a puzzling protein: Insights into Parkinson's disease pathogenesis. Experimental Neurology 2014;261:206
- Chao Wang, Maria A Telpoukhovskaia, Ben A Bahr, Xu Chen, Li Gan. Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases. Current Opinion in Neurobiology 2018;48:52
- Sravanthi S. P. Nadiminti, Madhushree Kamak, Sandhya P. Koushika. Tied up: Does altering phosphoinositide-mediated membrane trafficking influence neurodegenerative disease phenotypes?. J Genet 2018;97:753
- Adamantios Mamais, Rebecca Wallings, Emily M. Rocha. Precision Medicine in Neurodegenerative Disorders, Part II. 2018.
- Xin Wang, Timothy Huang, Guojun Bu, Huaxi Xu. Dysregulation of protein trafficking in neurodegeneration. Mol Neurodegeneration 2014;9
- Wanqiong Yuan, Chunli Song. The Emerging Role of Rab5 in Membrane Receptor Trafficking and Signaling Pathways. Biochemistry Research International 2020;2020:1
- Mark R. Cookson. Cellular effects of LRRK2 mutations. 2012;40:1070
- Evy Lobbestael, Chris Van den Haute, Francesca Macchi, Jean-Marc Taymans, Veerle Baekelandt. Pathogenic LRRK2 requires secondary factors to induce cellular toxicity. 2020;40
- Alexandra Beilina, Mark R Cookson. Genes associated with Parkinson's disease: regulation of autophagy and beyond. Journal of Neurochemistry 2016;139:91
- Natalja Funk, Marita Munz, Thomas Ott, Kathrin Brockmann, Andrea Wenninger-Weinzierl, Ralf Kühn, Daniela Vogt-Weisenhorn, Florian Giesert, Wolfgang Wurst, Thomas Gasser, Saskia Biskup. The Parkinson’s disease-linked Leucine-rich repeat kinase 2 (LRRK2) is required for insulin-stimulated translocation of GLUT4. Sci Rep 2019;9
- Rebecca M. Perrett, Zoi Alexopoulou, George K. Tofaris. The endosomal pathway in Parkinson's disease. Molecular and Cellular Neuroscience 2015;66:21
- Mark R. Cookson. Cellular functions of LRRK2 implicate vesicular trafficking pathways in Parkinson's disease. 2016;44:1603
- Hyun Jin Cho, Jia Yu, Chengsong Xie, Parvathi Rudrabhatla, Xi Chen, Junbing Wu, Loukia Parisiadou, Guoxiang Liu, Lixin Sun, Bo Ma, Jinhui Ding, Zhihua Liu, Huaibin Cai.
Leucine‐rich repeat kinase 2 regulates Sec16A at
ER
exit sites to allow
ER
–Golgi export
. The EMBO Journal 2014;33:2314
- Mark W. Dodson, Lok K. Leung, Mohiddin Lone, Michael A. Lizzio, Ming Guo. Novel alleles of the Drosophila LRRK2 homolog reveal a crucial role in endolysosomal functions and autophagy in vivo
. 2014
- Alireza Abdanipour, Hermann J. Schluesener, Taki Tiraihi, Ali Noori-Zadeh. Systemic administration of valproic acid stimulates overexpression of microtubule-associated protein 2 in the spinal cord injury model to promote neurite outgrowth. Neurological Research 2015;37:223
- Jaclyn Nicole Le Grand, Laura Gonzalez-Cano, Maria Angeliki Pavlou, Jens C. Schwamborn. Neural stem cells in Parkinson’s disease: a role for neurogenesis defects in onset and progression. Cell. Mol. Life Sci. 2015;72:773
- Christian Johannes Gloeckner, Pablo Porras. Guilt-by-Association – Functional Insights Gained From Studying the LRRK2 Interactome. Front. Neurosci. 2020;14
- Liang Huang, Mika Shimoji, Juan Wang, Salim Shah, Sukanta Kamila, Edward R. Biehl, Seung Lim, Allison Chang, Kathleen A. Maguire-Zeiss, Xiaomin Su, Howard J. Federoff. Development of Inducible Leucine-rich Repeat Kinase 2 (LRRK2) Cell Lines for Therapeutics Development in Parkinson's Disease. Neurotherapeutics 2013;10:840
- David Villarroel‐Campos, Francisca C. Bronfman, Christian Gonzalez‐Billault. Rab GTPase signaling in neurite outgrowth and axon specification. Cytoskeleton 2016;73:498
- Scott C. Vermilyea, Marina E. Emborg. In Vitro Modeling of Leucine-Rich Repeat Kinase 2 G2019S-Mediated Parkinson's Disease Pathology. Stem Cells and Development 2018;27:960
- P. Gómez-Suaga, E. Fdez, B. Fernández, M. Martínez-Salvador, M. Blanca Ramírez, J. Madero-Pérez, P. Rivero-Ríos, J.M. Fuentes, S. Hilfiker. Novel insights into the neurobiology underlying LRRK2-linked Parkinson's disease. Neuropharmacology 2014;85:45
- Insup Choi, Ji-won Byun, Sang Myun Park, Ilo Jou, Eun-Hye Joe. LRRK2 Inhibits FAK Activity by Promoting FERM-mediated Autoinhibition of FAK and Recruiting the Tyrosine Phosphatase, SHP-2. Exp Neurobiol 2016;25:269
- Laura Civiero, Susanna Cogo, Alice Biosa, Elisa Greggio. The role of LRRK2 in cytoskeletal dynamics. 2018;46:1653
- Yan Li, Mark R. Cookson. Proteomics; applications in familial Parkinson's disease. Journal of Neurochemistry 2019;151:446
- Gang Fang, Wen Wang, Vanja Paunic, Hamed Heydari, Michael Costanzo, Xiaoye Liu, Xiaotong Liu, Benjamin VanderSluis, Benjamin Oately, Michael Steinbach, Brian Van Ness, Eric E. Schadt, Nathan D. Pankratz, Charles Boone, Vipin Kumar, Chad L. Myers. Discovering genetic interactions bridging pathways in genome-wide association studies. Nat Commun 2019;10
- A. Raquel Esteves, Sandra M. Cardoso. LRRK2 at the Crossroad Between Autophagy and Microtubule Trafficking. Neuroscientist 2017;23:16
- Patrícia Coelho, Lígia Fão, Sandra Mota, A. Cristina Rego. Mitochondrial function and dynamics in neural stem cells and neurogenesis: Implications for neurodegenerative diseases. Ageing Research Reviews 2022;80:101667
- Dorien A. Roosen, Mark R. Cookson. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol Neurodegeneration 2016;11