en Experimental Neurobiology

Cited by CrossRef (22)

  1. Tiago Silva, Catarina Oliveira, Fernanda Borges. Caffeic acid derivatives, analogs and applications: a patent review (2009 – 2013). Expert Opinion on Therapeutic Patents 2014;24:1257
    https://doi.org/10.1517/13543776.2014.959492
  2. Muhammet Ay. Vanillic acid induces mitochondrial biogenesis in SH-SY5Y cells. Mol Biol Rep 2022;49:4443
    https://doi.org/10.1007/s11033-022-07284-6
  3. Banibrata Das, Ashoka Kandegedara, Liping Xu, Tamara Antonio, Timothy Stemmler, Maarten E. A. Reith, Aloke K. Dutta. A Novel Iron(II) Preferring Dopamine Agonist Chelator as Potential Symptomatic and Neuroprotective Therapeutic Agent for Parkinson’s Disease. ACS Chem. Neurosci. 2017;8:723
    https://doi.org/10.1021/acschemneuro.6b00356
  4. Rona R. Ramsay, Magdalena Majekova, Milagros Medina, Massimo Valoti. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Front. Neurosci. 2016;10
    https://doi.org/10.3389/fnins.2016.00375
  5. Dharmendra Kumar Khatri, Amey Kadbhane, Monica Patel, Shweta Nene, Srividya Atmakuri, Saurabh Srivastava, Shashi Bala Singh. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. Current Research in Pharmacology and Drug Discovery 2021;2:100022
    https://doi.org/10.1016/j.crphar.2021.100022
  6. Zdeněk Fišar. Drugs related to monoamine oxidase activity. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2016;69:112
    https://doi.org/10.1016/j.pnpbp.2016.02.012
  7. Hemendra J. Vekaria, W. Brad Hubbard, Natalie E. Scholpa, Malinda L. Spry, Jennifer L. Gooch, Sydney J. Prince, Rick G. Schnellmann, Patrick G. Sullivan. Formoterol, a β2-adrenoreceptor agonist, induces mitochondrial biogenesis and promotes cognitive recovery after traumatic brain injury. Neurobiology of Disease 2020;140:104866
    https://doi.org/10.1016/j.nbd.2020.104866
  8. Valentina Oliveri, Graziella Vecchio. 8-Hydroxyquinolines in medicinal chemistry: A structural perspective. European Journal of Medicinal Chemistry 2016;120:252
    https://doi.org/10.1016/j.ejmech.2016.05.007
  9. Martin Vališ, Jiří Masopust, Zbyšek Pavelek. Pharmacotherapy of non-Alzheimer's types of dementia. Neurol. pro Praxi 2020;21:41
    https://doi.org/10.36290/neu.2020.024
  10. JessicaD Panes, Aline Wendt, Oscar Ramirez-Molina, PatricioA Castro, Jorge Fuentealba. Deciphering the role of PGC-1α in neurological disorders: from mitochondrial dysfunction to synaptic failure. Neural Regen Res 2022;17:237
    https://doi.org/10.4103/1673-5374.317957
  11. Veda Prachayasittikul, Ratchanok Pingaew, Supaluk Prachayasittikul, Virapong Prachayasittikul. 8-Hydroxyquinolines: A Promising Pharmacophore Potentially Developed as Disease-Modifying Agents for Neurodegenerative Diseases: A Review. HETEROCYCLES 2022;105:202
    https://doi.org/10.3987/REV-22-SR(R)6
  12. Ashu Johri, Abhishek Chandra. Systems Medicine. 2022.
    https://doi.org/10.1016/B978-0-12-801238-3.11474-6
  13. Ryan M. Whitaker, Daniel Corum, Craig C. Beeson, Rick G. Schnellmann. Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases. Annu. Rev. Pharmacol. Toxicol. 2016;56:229
    https://doi.org/10.1146/annurev-pharmtox-010715-103155
  14. N. André Sasaki, Pascal Sonnet. A novel multi-target strategy to attenuate the progression of Parkinson's disease by diamine hybrid AGE/ALE inhibitor. Future Medicinal Chemistry 2021;13:2185
    https://doi.org/10.4155/fmc-2021-0217
  15. Makoto Naoi, Wakako Maruyama, Masayo Shamoto-Nagai. Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinson’s disease. J Neural Transm 2020;127:131
    https://doi.org/10.1007/s00702-020-02150-w
  16. Werner J. Geldenhuys, Thomas C. Leeper, Richard T. Carroll. mitoNEET as a novel drug target for mitochondrial dysfunction. Drug Discovery Today 2014;19:1601
    https://doi.org/10.1016/j.drudis.2014.05.001
  17. Scott Maynard, Arnaldur Hall, Panagiotis Galanos, Salvatore Rizza, Tatsuro Yamamoto, Helena Hagner Gram, Sebastian H N Munk, Muhammad Shoaib, Claus Storgaard Sørensen, Vilhelm A Bohr, Mads Lerdrup, Apolinar Maya-Mendoza, Jiri Bartek. Lamin A/C impairments cause mitochondrial dysfunction by attenuating PGC1α and the NAMPT-NAD+ pathway. 2022;50:9948
    https://doi.org/10.1093/nar/gkac741
  18. Muhammet Ay, Jie Luo, Monica Langley, Huajun Jin, Vellareddy Anantharam, Arthi Kanthasamy, Anumantha G. Kanthasamy. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease. Journal of Neurochemistry 2017;141:766
    https://doi.org/10.1111/jnc.14033
  19. Zuzana Walker, Katherine L Possin, Bradley F Boeve, Dag Aarsland. Lewy body dementias. The Lancet 2015;386:1683
    https://doi.org/10.1016/S0140-6736(15)00462-6
  20. Yuanyuan Cheng, Chuanbin Yang, Jia Zhao, Hung Fat Tse, Jianhui Rong. Proteomic identification of calcium-binding chaperone calreticulin as a potential mediator for the neuroprotective and neuritogenic activities of fruit-derived glycoside amygdalin. The Journal of Nutritional Biochemistry 2015;26:146
    https://doi.org/10.1016/j.jnutbio.2014.09.012
  21. Vasu D. Appanna, Christopher Auger, Joseph Lemire. Energy, the driving force behind good and ill health. Front. Cell Dev. Biol. 2014;2
    https://doi.org/10.3389/fcell.2014.00028
  22. Asma Elmabruk, Banibrata Das, Deepthi Yedlapudi, Liping Xu, Tamara Antonio, Maarten E. A. Reith, Aloke K. Dutta. Design, Synthesis, and Pharmacological Characterization of Carbazole Based Dopamine Agonists as Potential Symptomatic and Neuroprotective Therapeutic Agents for Parkinson’s Disease. ACS Chem. Neurosci. 2019;10:396
    https://doi.org/10.1021/acschemneuro.8b00291