en Experimental Neurobiology

Cited by CrossRef (50)

  1. Wenyuan Yin, Samuel P. Swanson, Rebecca G. Biltz, Ethan J. Goodman, Natalie R. Gallagher, John F. Sheridan, Jonathan P. Godbout. Unique brain endothelial profiles activated by social stress promote cell adhesion, prostaglandin E2 signaling, hypothalamic–pituitary–adrenal axis modulation, and anxiety. Neuropsychopharmacol. 2022;47:2271
    https://doi.org/10.1038/s41386-022-01434-x
  2. Hyun Joo Shin, Eun Ae Jeong, Jong Youl Lee, Hyeong Seok An, Hye Min Jang, Yu Jeong Ahn, Jaewoong Lee, Kyung Eun Kim, Gu Seob Roh. Lipocalin-2 Deficiency Reduces Oxidative Stress and Neuroinflammation and Results in Attenuation of Kainic Acid-Induced Hippocampal Cell Death. Antioxidants 2021;10:100
    https://doi.org/10.3390/antiox10010100
  3. Byung-Kwon Jung, Kwon-Yul Ryu. Lipocalin-2: a therapeutic target to overcome neurodegenerative diseases by regulating reactive astrogliosis. Exp Mol Med 2023;55:2138
    https://doi.org/10.1038/s12276-023-01098-7
  4. Alice Braga, Sara Bandiera, Jeroen Verheyen, Regan Hamel, Carola Rutigliani, Frank Edenhofer, Jayden Aaron Smith, Stefano Pluchino. Combination of In Situ Lcn2 pRNA-RNAi Nanotherapeutics and iNSC Transplantation Ameliorates Experimental SCI in Mice. Molecular Therapy 2020;28:2677
    https://doi.org/10.1016/j.ymthe.2020.08.001
  5. Jayden A. Smith, Alice Braga, Jeroen Verheyen, Silvia Basilico, Sara Bandiera, Clara Alfaro-Cervello, Luca Peruzzotti-Jametti, Dan Shu, Farzin Haque, Peixuan Guo, Stefano Pluchino. RNA Nanotherapeutics for the Amelioration of Astroglial Reactivity. Molecular Therapy - Nucleic Acids 2018;10:103
    https://doi.org/10.1016/j.omtn.2017.11.008
  6. Jin-Sil Bae, Ji-Eun Heo, Kwon-Yul Ryu. Proteasome inhibition suppresses the induction of lipocalin-2 upon systemic lipopolysaccharide challenge in mice. Mol Brain 2024;17
    https://doi.org/10.1186/s13041-024-01147-w
  7. Nihal A. Salem, Lawrence Manzano, Michael W. Keist, Olga Ponomareva, Amanda J. Roberts, Marisa Roberto, R. Dayne Mayfield. Cell-type brain-region specific changes in prefrontal cortex of a mouse model of alcohol dependence. Neurobiology of Disease 2024;190:106361
    https://doi.org/10.1016/j.nbd.2023.106361
  8. Navdeep Kaur, Geneva LaForce, Deepthi P. Mallela, Prasenjit Prasad Saha, Jennifer Buffa, Xinmin S. Li, Naseer Sangwan, Kasia Rothenberg, Weifei Zhu. Exploratory Transcriptomic Profiling Reveals the Role of Gut Microbiota in Vascular Dementia. IJMS 2023;24:8091
    https://doi.org/10.3390/ijms24098091
  9. Hyun Joo Shin, Kyung Eun Kim, Eun Ae Jeong, Hyeong Seok An, So Jeong Lee, Jaewoong Lee, Gu Seob Roh. Amyloid β oligomer promotes microglial galectin-3 and astrocytic lipocalin-2 levels in the hippocampus of mice fed a high-fat diet. Biochemical and Biophysical Research Communications 2023;667:10
    https://doi.org/10.1016/j.bbrc.2023.05.026
  10. Madeline Halpern, Kristen J. Brennand, James Gregory. Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiology of Disease 2019;132:104562
    https://doi.org/10.1016/j.nbd.2019.104562
  11. Ruqayya Afridi, Jae-Hong Kim, Anup Bhusal, Won-Ha Lee, Kyoungho Suk. Lipocalin-2 as a mediator of neuroimmune communication. 2024;116:357
    https://doi.org/10.1093/jleuko/qiad157
  12. Jong-Heon Kim, Ruqayya Afridi, Jin Han, Hyun-Gug Jung, Seung-Chan Kim, Eun Mi Hwang, Hyun Soo Shim, Hoon Ryu, Youngshik Choe, Hyang-Sook Hoe, Kyoungho Suk. Gamma subunit of complement component 8 is a neuroinflammation inhibitor. 2021;144:528
    https://doi.org/10.1093/brain/awaa425
  13. Guoqiang Liu, Quntao Yu, Bo Tan, Xiao Ke, Chen Zhang, Hao Li, Tongmei Zhang, Youming Lu. Gut dysbiosis impairs hippocampal plasticity and behaviors by remodeling serum metabolome. Gut Microbes 2022;14
    https://doi.org/10.1080/19490976.2022.2104089
  14. Hajime Shishido, Yasunori Toyota, Ya Hua, Richard F Keep, Guohua Xi. Role of lipocalin 2 in intraventricular haemoglobin-induced brain injury. Stroke Vasc Neurol 2016;1:37
    https://doi.org/10.1136/svn-2016-000009
  15. Yijian Yang, Chuansen Wang, Rui Chen, Yuchang Wang, Changwu Tan, Jingping Liu, Qinghua Zhang, Gelei Xiao. Novel therapeutic modulators of astrocytes for hydrocephalus. Front. Mol. Neurosci. 2022;15
    https://doi.org/10.3389/fnmol.2022.932955
  16. Fatemeh Ranjbar Taklimie, Natalie Gasterich, Miriam Scheld, Ralf Weiskirchen, Cordian Beyer, Tim Clarner, Adib Zendedel. Hypoxia Induces Astrocyte-Derived Lipocalin-2 in Ischemic Stroke. IJMS 2019;20:1271
    https://doi.org/10.3390/ijms20061271
  17. Wen Cao, Dongsheng Fan. Neutrophils: a subgroup of neglected immune cells in ALS. Front. Immunol. 2023;14
    https://doi.org/10.3389/fimmu.2023.1246768
  18. Melanie Maya Kaelberer, Ana Isabel Caceres, Sven-Eric Jordt. Activation of a nerve injury transcriptional signature in airway-innervating sensory neurons after lipopolysaccharide-induced lung inflammation. American Journal of Physiology-Lung Cellular and Molecular Physiology 2020;318:L953
    https://doi.org/10.1152/ajplung.00403.2019
  19. Grzegorz A. Czapski, Yuhai Zhao, Walter J. Lukiw, Joanna B. Strosznajder. Acute Systemic Inflammatory Response Alters Transcription Profile of Genes Related to Immune Response and Ca2+ Homeostasis in Hippocampus; Relevance to Neurodegenerative Disorders. IJMS 2020;21:7838
    https://doi.org/10.3390/ijms21217838
  20. Tomohiro Ohgomori, Ryo Yamasaki, Hideyuki Takeuchi, Kenji Kadomatsu, Jun‐ichi Kira, Shozo Jinno. Differential activation of neuronal and glial STAT3 in the spinal cord of the SOD1G93A mouse model of amyotrophic lateral sclerosis. Eur J of Neuroscience 2017;46:2001
    https://doi.org/10.1111/ejn.13650
  21. Jingwei Zhang, Zeyu Wang, Hao Zhang, Shuwang Li, Jing Li, Hongwei Liu, Quan Cheng. The role of lipocalin 2 in brain injury and recovery after ischemic and hemorrhagic stroke. Front. Mol. Neurosci. 2022;15
    https://doi.org/10.3389/fnmol.2022.930526
  22. Sonja Hochmeister, Odilo Engel, Milena Z. Adzemovic, Thomas Pekar, Paul Kendlbacher, Manuel Zeitelhofer, Michaela Haindl, Andreas Meisel, Franz Fazekas, Thomas Seifert-Held, Jean-Claude Baron. Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke. PLoS ONE 2016;11:e0154797
    https://doi.org/10.1371/journal.pone.0154797
  23. Kanokporn Pinyopornpanish, Nipon Chattipakorn, Siriporn C. Chattipakorn. Lipocalin‐2: Its perspectives in brain pathology and possible roles in cognition. J Neuroendocrinology 2019;31
    https://doi.org/10.1111/jne.12779
  24. Tomohiro Ohgomori, Jun Yamada, Hideyuki Takeuchi, Kenji Kadomatsu, Shozo Jinno, Yoland Smith. Comparative morphometric analysis of microglia in the spinal cord of SOD1G93A transgenic mouse model of amyotrophic lateral sclerosis. Eur J of Neuroscience 2016;43:1340
    https://doi.org/10.1111/ejn.13227
  25. Doortje W. Dekens, Ulrich L.M. Eisel, Leonie Gouweleeuw, Regien G. Schoemaker, Peter P. De Deyn, Petrus J.W. Naudé. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Research Reviews 2021;70:101414
    https://doi.org/10.1016/j.arr.2021.101414
  26. Nida Buawangpong, Kanokporn Pinyopornpanish, Natthapat Siri‐Angkul, Nipon Chattipakorn, Siriporn C. Chattipakorn. The role of trimethylamine‐N‐Oxide in the development of Alzheimer's disease. Journal Cellular Physiology 2022;237:1661
    https://doi.org/10.1002/jcp.30646
  27. Yongyan Fan, Xiaohuan Li, Jianjun Ma, Dawei Yang, Keke Liang, Yu Shen, Wei Wei, Linrui Dong, Chuanze Liu, Zonghan She, Xuelin Qi, Xiaoxue Shi, Qi Gu, Jinhua Zheng, Dongsheng Li. Increased plasma lipocalin‐2 levels are associated with nonmotor symptoms and neuroimaging features in patients with Parkinson's disease. J of Neuroscience Research 2024;102
    https://doi.org/10.1002/jnr.25303
  28. Ana C. Ferreira, Sandro Dá Mesquita, João C. Sousa, Margarida Correia-Neves, Nuno Sousa, Joana A. Palha, Fernanda Marques. From the periphery to the brain: Lipocalin-2, a friend or foe?. Progress in Neurobiology 2015;131:120
    https://doi.org/10.1016/j.pneurobio.2015.06.005
  29. Kyoungho Suk. Lipocalin-2 as a therapeutic target for brain injury: An astrocentric perspective. Progress in Neurobiology 2016;144:158
    https://doi.org/10.1016/j.pneurobio.2016.08.001
  30. Xiaoli Guo, Atsuko Kimura, Kazuhiko Namekata, Chikako Harada, Nobutaka Arai, Kohsuke Takeda, Hidenori Ichijo, Takayuki Harada. ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proc. Natl. Acad. Sci. U.S.A. 2022;119
    https://doi.org/10.1073/pnas.2103812119
  31. Fang Yu, Aisha Saand, Changhong Xing, Jong Woo Lee, Liangge Hsu, Octavia P Palmer, Vanessa Jackson, Lu Tang, MingMing Ning, Rose Du, Patrick M Kochanek, Eng H Lo, Sherry H-Y Chou. CSF lipocalin-2 increases early in subarachnoid hemorrhage are associated with neuroinflammation and unfavorable outcome. J Cereb Blood Flow Metab 2021;41:2524
    https://doi.org/10.1177/0271678X211012110
  32. Seyedeh Marziyeh Jabbari Shiadeh, Fanny Goretta, Pernilla Svedin, Thomas Jansson, Carina Mallard, Maryam Ardalan. Long-term impact of maternal obesity on the gliovascular unit and ephrin signaling in the hippocampus of adult offspring. J Neuroinflammation 2024;21
    https://doi.org/10.1186/s12974-024-03030-w
  33. Dimitrios Nasioudis, Steven S. Witkin. Neutrophil gelatinase-associated lipocalin and innate immune responses to bacterial infections. Med Microbiol Immunol 2015;204:471
    https://doi.org/10.1007/s00430-015-0394-1
  34. Doortje W. Dekens, Petrus J. W. Naudé, Jan N. Keijser, Ate S. Boerema, Peter P. De Deyn, Ulrich L. M. Eisel. Lipocalin 2 contributes to brain iron dysregulation but does not affect cognition, plaque load, and glial activation in the J20 Alzheimer mouse model. J Neuroinflammation 2018;15
    https://doi.org/10.1186/s12974-018-1372-5
  35. Mithilesh Kumar Jha, Shinrye Lee, Dong Ho Park, Hyun Kook, Keun-Gyu Park, In-Kyu Lee, Kyoungho Suk. Diverse functional roles of lipocalin-2 in the central nervous system. Neuroscience & Biobehavioral Reviews 2015;49:135
    https://doi.org/10.1016/j.neubiorev.2014.12.006
  36. Micah Harland, Sandy Torres, Jingyi Liu, Xinglong Wang. Neuronal Mitochondria Modulation of LPS-Induced Neuroinflammation. J. Neurosci. 2020;40:1756
    https://doi.org/10.1523/JNEUROSCI.2324-19.2020
  37. Chao Luo, Shuai Zhou, Shi Yin, Lipeng Jian, Pengren Luo, Jigeng Dong, Erheng Liu. Lipocalin-2 and Cerebral Stroke. Front. Mol. Neurosci. 2022;15
    https://doi.org/10.3389/fnmol.2022.850849
  38. Tiziana Petrozziello, Alexandra N. Mills, Sali M.K. Farhan, Kaly A. Mueller, Eric J. Granucci, Kelly E. Glajch, James Chan, Sheena Chew, James D. Berry, Ghazaleh Sadri‐Vakili. Lipocalin‐2 is increased in amyotrophic lateral sclerosis. Muscle and Nerve 2020;62:272
    https://doi.org/10.1002/mus.26911
  39. Maria Angeliki S. Pavlou, Luc Grandbarbe, Noel J. Buckley, Simone P. Niclou, Alessandro Michelucci. Transcriptional and epigenetic mechanisms underlying astrocyte identity. Progress in Neurobiology 2019;174:36
    https://doi.org/10.1016/j.pneurobio.2018.12.007
  40. Emanuele Schiavon, Joshua L. Smalley, Sherylanne Newton, Nigel H. Greig, Ian D. Forsythe, Manuel S. Malmierca. Neuroinflammation and ER-stress are key mechanisms of acute bilirubin toxicity and hearing loss in a mouse model. PLoS ONE 2018;13:e0201022
    https://doi.org/10.1371/journal.pone.0201022
  41. Ruijia Liu, Jun Wang, Yang Chen, Jenelle M. Collier, Okan Capuk, Shijie Jin, Ming Sun, Sujan K. Mondal, Theresa L. Whiteside, Donna B. Stolz, Yongjie Yang, Gulnaz Begum. NOX activation in reactive astrocytes regulates astrocytic LCN2 expression and neurodegeneration. Cell Death Dis 2022;13
    https://doi.org/10.1038/s41419-022-04831-8
  42. Heeyoung Kang, Hyun Joo Shin, Hyeong Seok An, Zhen Jin, Jong Youl Lee, Jaewoong Lee, Kyung Eun Kim, Eun Ae Jeong, Kyu Yeong Choi, Catriona McLean, Kun Ho Lee, Soo Kyoung Kim, Hae Ryong Lee, Gu Seob Roh. Role of Lipocalin-2 in Amyloid-Beta Oligomer-Induced Mouse Model of Alzheimer’s Disease. Antioxidants 2021;10:1657
    https://doi.org/10.3390/antiox10111657
  43. Juntao Cui, Yu Yuan, Jun Wang, Ning Song, Junxia Xie. Desferrioxamine Ameliorates Lipopolysaccharide-Induced Lipocalin-2 Upregulation via Autophagy Activation in Primary Astrocytes. Mol Neurobiol 2022;59:2052
    https://doi.org/10.1007/s12035-021-02687-1
  44. Hejer Boutej, Reza Rahimian, Sai Sampath Thammisetty, Louis-Charles Béland, Mélanie Lalancette-Hébert, Jasna Kriz. Diverging mRNA and Protein Networks in Activated Microglia Reveal SRSF3 Suppresses Translation of Highly Upregulated Innate Immune Transcripts. Cell Reports 2017;21:3220
    https://doi.org/10.1016/j.celrep.2017.11.058
  45. Anup Bhusal, Won-Ha Lee, Kyoungho Suk. Lipocalin-2 in Diabetic Complications of the Nervous System: Physiology, Pathology, and Beyond. Front. Physiol. 2021;12
    https://doi.org/10.3389/fphys.2021.638112
  46. Byung-Kwon Jung, Yujin Park, Boran Yoon, Jin-Sil Bae, Seung-Woo Han, Ji-Eun Heo, Dong-Eun Kim, Kwon-Yul Ryu. Reduced secretion of LCN2 (lipocalin 2) from reactive astrocytes through autophagic and proteasomal regulation alleviates inflammatory stress and neuronal damage. Autophagy 2023;19:2296
    https://doi.org/10.1080/15548627.2023.2180202
  47. Kofi Asiedu. Role of ocular surface neurobiology in neuronal-mediated inflammation in dry eye disease. Neuropeptides 2022;95:102266
    https://doi.org/10.1016/j.npep.2022.102266
  48. Deepak Prasad Gupta, Sung Hee Park, Young-Sun Lee, Sanghyun Lee, Sujin Lim, Jiin Byun, Ik-Hyun Cho, Gyun Jee Song. Daphne genkwa flower extract promotes the neuroprotective effects of microglia. Phytomedicine 2023;108:154486
    https://doi.org/10.1016/j.phymed.2022.154486
  49. Irma Vismara, Simonetta Papa, Valeria Veneruso, Emanuele Mauri, Alessandro Mariani, Massimiliano De Paola, Roberta Affatato, Arianna Rossetti, Mattia Sponchioni, Davide Moscatelli, Alessandro Sacchetti, Filippo Rossi, Gianluigi Forloni, Pietro Veglianese. Selective Modulation of A1 Astrocytes by Drug-Loaded Nano-Structured Gel in Spinal Cord Injury. ACS Nano 2020;14:360
    https://doi.org/10.1021/acsnano.9b05579
  50. Ching-Yi Tsai, Chin-Lai Lee, Jacqueline C.C. Wu. Astrocyte-secreted lipocalin-2 elicits bioenergetic failure-induced neuronal death that is causally related to high fatality in a mouse model of hepatic encephalopathy. Neurochemistry International 2024;178:105800
    https://doi.org/10.1016/j.neuint.2024.105800