en Experimental Neurobiology

Cited by CrossRef (82)

  1. Yvonne Koch, Anika M. Helferich, Petra Steinacker, Patrick Oeckl, Paul Walther, Jochen H. Weishaupt, Karin M. Danzer, Markus Otto. Aggregated α-Synuclein Increases SOD1 Oligomerization in a Mouse Model of Amyotrophic Lateral Sclerosis. The American Journal of Pathology 2016;186:2152
    https://doi.org/10.1016/j.ajpath.2016.04.008
  2. Surbhi Sharma, Richard J. Young, Jingchun Chen, Xiangning Chen, Edwin C. Oh, Martin R. Schiller. Minimotifs dysfunction is pervasive in neurodegenerative disorders. A&D Transl Res & Clin Interv 2018;4:414
    https://doi.org/10.1016/j.trci.2018.06.005
  3. Maria Zakharova. Modern approaches in gene therapy of motor neuron diseases. Medicinal Research Reviews 2021;41:2634
    https://doi.org/10.1002/med.21705
  4. Swati Dhasmana, Anupam Dhasmana, Sudhir Kotnala, Varsha Mangtani, Acharan S. Narula, Shafiul Haque, Meena Jaggi, Murali M. Yallapu, Subhash C. Chauhan. Boosting Mitochondrial Potential: An Imperative Therapeutic Intervention in Amyotrophic Lateral Sclerosis. CN 2023;21:1117
    https://doi.org/10.2174/1570159X20666220915092703
  5. Yann Gambin, Mark Polinkovsky, Bill Francois, Nichole Giles, Akshay Bhumkar, Emma Sierecki. Confocal Spectroscopy to Study Dimerization, Oligomerization and Aggregation of Proteins: A Practical Guide. IJMS 2016;17:655
    https://doi.org/10.3390/ijms17050655
  6. G. Lin, D. Mao, H.J. Bellen. Fly Models of Human Diseases. 2016.
    https://doi.org/10.1016/bs.ctdb.2016.07.004
  7. A.-S. Biesalski, J. Becktepe, T. Bartsch, C. Franke. Neurologische Pathophysiologie. 2016.
    https://doi.org/10.1007/978-3-662-56784-5_4
  8. Jack L. Martin, Sally J. Dawson, Jonathan E. Gale. An emerging role for stress granules in neurodegenerative disease and hearing loss. Hearing Research 2022;426:108634
    https://doi.org/10.1016/j.heares.2022.108634
  9. Kunjumon I. Vadakkan. Neurodegenerative disorders share common features of “loss of function” states of a proposed mechanism of nervous system functions. Biomedicine & Pharmacotherapy 2016;83:412
    https://doi.org/10.1016/j.biopha.2016.06.042
  10. Hemerson Casado Gama, Mariana A. Amorós, Mykaella Andrade de Araújo, Congzhou M. Sha, Mirella P.S. Vieira, Rayssa G.D. Torres, Gabriela F. Souza, Janaína A. Junkes, Nikolay V. Dokholyan, Daniel Leite Góes Gitaí, Marcelo Duzzioni. Systematic review and meta-analysis of dysregulated microRNAs derived from liquid biopsies as biomarkers for amyotrophic lateral sclerosis. Non-coding RNA Research 2024;9:523
    https://doi.org/10.1016/j.ncrna.2024.02.006
  11. Simona Rossi, Mauro Cozzolino, Maria Teresa Carrì. Old versus New Mechanisms in the Pathogenesis of ALS. Brain Pathology 2016;26:276
    https://doi.org/10.1111/bpa.12355
  12. Guan-yong Ou, Wen-wen Lin, Wei-jiang Zhao. Neuregulins in Neurodegenerative Diseases. Front. Aging Neurosci. 2021;13
    https://doi.org/10.3389/fnagi.2021.662474
  13. Alireza Abdolvahabi, Yunhua Shi, Aleksandra Chuprin, Sanaz Rasouli, Bryan F. Shaw. Stochastic Formation of Fibrillar and Amorphous Superoxide Dismutase Oligomers Linked to Amyotrophic Lateral Sclerosis. ACS Chem. Neurosci. 2016;7:799
    https://doi.org/10.1021/acschemneuro.6b00048
  14. Megha Kaul, Debanjan Mukherjee, Howard L. Weiner, Laura M. Cox. Gut microbiota immune cross-talk in amyotrophic lateral sclerosis. Neurotherapeutics 2024;21:e00469
    https://doi.org/10.1016/j.neurot.2024.e00469
  15. Gianluigi Forloni, Vladimiro Artuso, Pietro La Vitola, Claudia Balducci. Oligomeropathies and pathogenesis of Alzheimer and Parkinson's diseases. Movement Disorders 2016;31:771
    https://doi.org/10.1002/mds.26624
  16. Victor Banerjee, Ofek Oren, Efrat Ben-Zeev, Ran Taube, Stanislav Engel, Niv Papo. A computational combinatorial approach identifies a protein inhibitor of superoxide dismutase 1 misfolding, aggregation, and cytotoxicity. Journal of Biological Chemistry 2017;292:15777
    https://doi.org/10.1074/jbc.M117.789610
  17. Ankit Srivastava, Nikita Admane, Shiv Pratap Singh Yadav, Himanshi Kukrety. TDP-43 and Neurodegeneration. 2017.
    https://doi.org/10.1016/B978-0-12-820066-7.00004-7
  18. Beatrice Vilardo, Fabiola De Marchi, Davide Raineri, Marcello Manfredi, Veronica De Giorgis, Alen Bebeti, Lorenza Scotti, Natasa Kustrimovic, Giuseppe Cappellano, Letizia Mazzini, Annalisa Chiocchetti. Shotgun Proteomics Links Proteoglycan-4+ Extracellular Vesicles to Cognitive Protection in Amyotrophic Lateral Sclerosis. Biomolecules 2024;14:727
    https://doi.org/10.3390/biom14060727
  19. Sophie Layalle, Laetitia They, Sarah Ourghani, Cédric Raoul, Laurent Soustelle. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. IJMS 2021;22:904
    https://doi.org/10.3390/ijms22020904
  20. Arun Upadhyay, Ayeman Amanullah, Vibhuti Joshi, Ribhav Mishra, Amit Mishra. Inflammation: the Common Link in Brain Pathologies. 2021.
    https://doi.org/10.1007/978-981-10-1711-7_8
  21. Ivan L. Salazar, Margarida V. Caldeira, Michele Curcio, Carlos B. Duarte. The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle. Neurochem Res 2016;41:156
    https://doi.org/10.1007/s11064-015-1752-5
  22. I. S. Bakulin, A. V. Chervyakov, E. I. Kremneva, R. N. Konovalov, M. N. Zakharova. Structural and Functional Neuroimaging in Amyotrophic Lateral Sclerosis. Hum Physiol 2018;44:844
    https://doi.org/10.1134/S0362119718080029
  23. Winanto Ng, Shi-Yan Ng. Remodeling of astrocyte secretome in amyotrophic lateral sclerosis: uncovering novel targets to combat astrocyte-mediated toxicity. Transl Neurodegener 2022;11
    https://doi.org/10.1186/s40035-022-00332-y
  24. Swati Dhasmana, Anupam Dhasmana, Acharan S. Narula, Meena Jaggi, Murali M. Yallapu, Subhash C. Chauhan. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sciences 2022;288:120156
    https://doi.org/10.1016/j.lfs.2021.120156
  25. Bar Dagan, Ofek Oren, Victor Banerjee, Ran Taube, Niv Papo. A hyperthermophilic protein G variant engineered via directed evolution prevents the formation of toxic SOD1 oligomers. Proteins 2019;87:738
    https://doi.org/10.1002/prot.25700
  26. Emanuele Buratti. Frontotemporal Dementias. 2019.
    https://doi.org/10.1007/978-3-030-51140-1_15
  27. Tae-Gyun Woo, Min-Ho Yoon, So-mi Kang, Soyoung Park, Jung-Hyun Cho, Young Jun Hwang, Jinsook Ahn, Hyewon Jang, Yun-Jeong Shin, Eui-Man Jung, Nam-Chul Ha, Bae-Hoon Kim, Yonghoon Kwon, Bum-Joon Park. Novel chemical inhibitor against SOD1 misfolding and aggregation protects neuron-loss and ameliorates disease symptoms in ALS mouse model. Commun Biol 2021;4
    https://doi.org/10.1038/s42003-021-02862-z
  28. Fabiola Puentes, Andrea Malaspina, Johannes M. van Noort, Sandra Amor. Non‐neuronal Cells in ALS: Role of Glial, Immune cells and Blood‐CNS Barriers. Brain Pathology 2016;26:248
    https://doi.org/10.1111/bpa.12352
  29. . .
    https://doi.org/
  30. Xue Jiang, Weihao Pan, Miao Chen, Weidi Wang, Weichen Song, Guan Ning Lin. Integrative enrichment analysis of gene expression based on an artificial neuron. BMC Med Genomics 2021;14
    https://doi.org/10.1186/s12920-021-00988-x
  31. Antonia Ratti, Emanuele Buratti. Physiological functions and pathobiology of TDP‐43 and FUS/TLS proteins. Journal of Neurochemistry 2016;138:95
    https://doi.org/10.1111/jnc.13625
  32. Xia Guo, Xue Jiang, Jing Xu, Xiongwen Quan, Min Wu, Han Zhang. Ensemble Consensus-Guided Unsupervised Feature Selection to Identify Huntington’s Disease-Associated Genes. Genes 2018;9:350
    https://doi.org/10.3390/genes9070350
  33. Greta Musteikyte, Mantas Ziaunys, Vytautas Smirnovas. Methylene blue inhibits nucleation and elongation of SOD1 amyloid fibrils. 2020;8:e9719
    https://doi.org/10.7717/peerj.9719
  34. Xin Gen Lei, Jian-Hong Zhu, Wen-Hsing Cheng, Yongping Bao, Ye-Shih Ho, Amit R. Reddi, Arne Holmgren, Elias S. J. Arnér. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiological Reviews 2016;96:307
    https://doi.org/10.1152/physrev.00010.2014
  35. Manaal Fatima, Rachel Tan, Glenda M. Halliday, Jillian J. Kril. Spread of pathology in amyotrophic lateral sclerosis: assessment of phosphorylated TDP-43 along axonal pathways. acta neuropathol commun 2015;3
    https://doi.org/10.1186/s40478-015-0226-y
  36. K.S. Chen, E.L. Feldman. Molecular and Cellular Therapies for Motor Neuron Diseases. 2015.
    https://doi.org/10.1016/B978-0-12-802257-3.00009-2
  37. Sébastien Feuillette, Morgane Delarue, Gaëtan Riou, Anne-Lise Gaffuri, Jane Wu, Zsolt Lenkei, Olivier Boyer, Thierry Frébourg, Dominique Campion, Magalie Lecourtois. Neuron-to-Neuron Transfer of FUS in Drosophila Primary Neuronal Culture Is Enhanced by ALS-Associated Mutations. J Mol Neurosci 2017;62:114
    https://doi.org/10.1007/s12031-017-0908-y
  38. Heiko Braak, Kelly Del Tredici. Anterior Cingulate Cortex TDP-43 Pathology in Sporadic Amyotrophic Lateral Sclerosis. 2018;77:74
    https://doi.org/10.1093/jnen/nlx104
  39. Cathryn L. Ugalde, David I. Finkelstein, Victoria A. Lawson, Andrew F. Hill. Pathogenic mechanisms of prion protein, amyloid‐β and α‐synuclein misfolding: the prion concept and neurotoxicity of protein oligomers. Journal of Neurochemistry 2016;139:162
    https://doi.org/10.1111/jnc.13772
  40. Francescaelena De Rose, Roberto Marotta, Giuseppe Talani, Tiziano Catelani, Paolo Solari, Simone Poddighe, Giuseppe Borghero, Francesco Marrosu, Enrico Sanna, Sanjay Kasture, Elio Acquas, Anna Liscia. Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS. Sci Rep 2017;7
    https://doi.org/10.1038/srep41059
  41. Kelly Del Tredici, Heiko Braak. Neuropathology and neuroanatomy of TDP-43 amyotrophic lateral sclerosis. 2022;35:660
    https://doi.org/10.1097/WCO.0000000000001098
  42. T.A. Yacoubian. Drug Discovery Approaches for the Treatment of Neurodegenerative Disorders. 2022.
    https://doi.org/10.1016/B978-0-12-802810-0.00001-5
  43. G.Y. Wang, S.L. Rayner, R. Chung, B.Y. Shi, X.J. Liang. Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Materials Today Bio 2020;6:100055
    https://doi.org/10.1016/j.mtbio.2020.100055
  44. Eleonora Dalla Bella, Enrica Bersano, Giovanni Antonini, Giuseppe Borghero, Margherita Capasso, Claudia Caponnetto, Adriano Chiò, Massimo Corbo, Massimiliano Filosto, Fabio Giannini, Rossella Spataro, Christian Lunetta, Jessica Mandrioli, Sonia Messina, Maria Rosaria Monsurrò, Gabriele Mora, Nilo Riva, Romana Rizzi, Gabriele Siciliano, Vincenzo Silani, Isabella Simone, Gianni Sorarù, Valeria Tugnoli, Lorenzo Verriello, Paolo Volanti, Roberto Furlan, John M Nolan, Emmanuelle Abgueguen, Irene Tramacere, Giuseppe Lauria. The unfolded protein response in amyotrophic later sclerosis: results of a phase 2 trial. 2021;144:2635
    https://doi.org/10.1093/brain/awab167
  45. Orla Hardiman, Ammar Al-Chalabi, Adriano Chio, Emma M. Corr, Giancarlo Logroscino, Wim Robberecht, Pamela J. Shaw, Zachary Simmons, Leonard H. van den Berg. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017;3
    https://doi.org/10.1038/nrdp.2017.71
  46. Birthe Fahrenkrog, Amnon Harel. Perturbations in Traffic: Aberrant Nucleocytoplasmic Transport at the Heart of Neurodegeneration. Cells 2018;7:232
    https://doi.org/10.3390/cells7120232
  47. Donatienne van Weehaeghe, Jenny Ceccarini, Stefanie M. Willekens, Joke de Vocht, Philip van Damme, Koen van Laere. Is there a glucose metabolic signature of spreading TDP-43 pathology in amyotrophic lateral sclerosis?. Q J Nucl Med Mol Imaging 2020;64
    https://doi.org/10.23736/S1824-4785.17.03009-6
  48. Justin Torok, Pedro D. Maia, Parul Verma, Christopher Mezias, Ashish Raj, Michele Migliore. Emergence of directional bias in tau deposition from axonal transport dynamics. PLoS Comput Biol 2021;17:e1009258
    https://doi.org/10.1371/journal.pcbi.1009258
  49. Piotr Włodarczyk, Mikołaj Witczak, Agnieszka Gajewska, Tomasz Chady, Igor Piotrowski. The role of TDP-43 protein in amyotrophic lateral sclerosis. JMS 2022;91:e710
    https://doi.org/10.20883/medical.e710
  50. Jade Pham, Matt Keon, Samuel Brennan, Nitin Saksena. Connecting RNA-Modifying Similarities of TDP-43, FUS, and SOD1 with MicroRNA Dysregulation Amidst A Renewed Network Perspective of Amyotrophic Lateral Sclerosis Proteinopathy. IJMS 2020;21:3464
    https://doi.org/10.3390/ijms21103464
  51. Gianluigi Forloni, Pietro La Vitola, Claudia Balducci. Oligomeropathies, inflammation and prion protein binding. Front. Neurosci. 2022;16
    https://doi.org/10.3389/fnins.2022.822420
  52. Yoshihisa Watanabe, Katsutoshi Taguchi, Masaki Tanaka. Ubiquitin, Autophagy and Neurodegenerative Diseases. Cells 2020;9:2022
    https://doi.org/10.3390/cells9092022
  53. Stephen A. Goutman, Kevin S. Chen, Ximena Paez-Colasante, Eva L. Feldman. Neurogenetics, Part II. 2020.
    https://doi.org/10.1016/B978-0-444-64076-5.00039-9
  54. Audrey M. G. Ragagnin, Sina Shadfar, Marta Vidal, Md Shafi Jamali, Julie D. Atkin. Motor Neuron Susceptibility in ALS/FTD. Front. Neurosci. 2019;13
    https://doi.org/10.3389/fnins.2019.00532
  55. Sunil Kumar Vimal, Hongyi Cao, Amit Dubey, Lokesh Agrawal, Nishit Pathak, Hua Zuo, Deepak Kumar, Sanjib Bhattacharyya. In vivoandin silicoinvestigations of the pegylated gold nanoparticle treatment of amyotrophic lateral sclerosis in mice. New J. Chem. 2022;46:12252
    https://doi.org/10.1039/D2NJ00452F
  56. Cameron Wells, Samuel E. Brennan, Matt Keon, Nitin K. Saksena. Prionoid Proteins in the Pathogenesis of Neurodegenerative Diseases. Front. Mol. Neurosci. 2019;12
    https://doi.org/10.3389/fnmol.2019.00271
  57. Ahmad Shahir Sadr, Zahra Abdollahpour, Atousa Aliahmadi, Changiz Eslahchi, Mina Nekouei, Lily Kiaei, Mahmoud Kiaei, Alireza Ghassempour. Detection of structural and conformational changes in ALS-causing mutant profilin-1 with hydrogen/deuterium exchange mass spectrometry and bioinformatics techniques. Metab Brain Dis 2022;37:229
    https://doi.org/10.1007/s11011-021-00763-y
  58. Richard N. Re. A Pathogenic Mechanism Potentially Operative in Multiple Progressive Diseases and Its Therapeutic Implications. The Journal of Clinical Pharma 2017;57:1507
    https://doi.org/10.1002/jcph.997
  59. Ke Zhang, Jonathan C. Grima, Jeffery D. Rothstein, Thomas E. Lloyd. Nucleocytoplasmic transport inC9orf72-mediated ALS/FTD. Nucleus 2016;7:132
    https://doi.org/10.1080/19491034.2016.1172152
  60. Alyona V. Michael, Justin J. Greenlee, Tyler A. Harm, S. Jo Moore, Min Zhang, Melissa S. Lind, M. Heather West Greenlee, Jodi D. Smith. In Situ Temporospatial Characterization of the Glial Response to Prion Infection. Vet Pathol 2020;57:90
    https://doi.org/10.1177/0300985819861708
  61. Xue Jiang, Miao Chen, Weichen Song, Guan Ning Lin. Label propagation-based semi-supervised feature selection on decoding clinical phenotypes with RNA-seq data. BMC Med Genomics 2021;14
    https://doi.org/10.1186/s12920-021-00985-0
  62. Rita Mejzini, Loren L. Flynn, Ianthe L. Pitout, Sue Fletcher, Steve D. Wilton, P. Anthony Akkari. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now?. Front. Neurosci. 2019;13
    https://doi.org/10.3389/fnins.2019.01310
  63. Babita, Sonal Gaur, Anil Kumar Mavi, Harsh Vardhan. Mechanism and Genetic Susceptibility of Neurological Disorders. 2019.
    https://doi.org/10.1007/978-981-99-9404-5_10
  64. Xue Jiang, Han Zhang, Xiongwen Quan, Zhandong Liu, Yanbin Yin, Quan Zou. Disease-related gene module detection based on a multi-label propagation clustering algorithm. PLoS ONE 2017;12:e0178006
    https://doi.org/10.1371/journal.pone.0178006
  65. Maruša Barbo, Metka Ravnik-Glavač. Extracellular Vesicles as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Genes 2023;14:325
    https://doi.org/10.3390/genes14020325
  66. Takahiro Takeda, Kazuo Kitagawa, Kimihito Arai. Phenotypic variability and its pathological basis in amyotrophic lateral sclerosis. Neuropathology 2020;40:40
    https://doi.org/10.1111/neup.12606
  67. Hannah J. Wiedner, Jimena Giudice. It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol 2021;28:465
    https://doi.org/10.1038/s41594-021-00601-w
  68. Laura Urrea, Miriam Segura-Feliu, Masami Masuda-Suzukake, Arnau Hervera, Lucas Pedraz, José Manuel García Aznar, Miquel Vila, Josep Samitier, Eduard Torrents, Isidro Ferrer, Rosalina Gavín, Masato Hagesawa, José Antonio del Río. Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons. Mol Neurobiol 2018;55:1847
    https://doi.org/10.1007/s12035-017-0451-4
  69. Edward Chuang, Acacia M. Hori, Christina D. Hesketh, James Shorter. Amyloid assembly and disassembly. 2018;131
    https://doi.org/10.1242/jcs.189928
  70. Ravichandran Manjupriya, Kamalanathan Pouthika, Gunabalan Madhumitha, Selvaraj Mohana Roopan. Biological aspects of nitrogen heterocycles for amyotrophic lateral sclerosis. Appl Microbiol Biotechnol 2023;107:43
    https://doi.org/10.1007/s00253-022-12317-y
  71. Megan Dubowsky, Frances Theunissen, Jillian M. Carr, Mary-Louise Rogers. The Molecular Link Between TDP-43, Endogenous Retroviruses and Inflammatory Neurodegeneration in Amyotrophic Lateral Sclerosis: a Potential Target for Triumeq, an Antiretroviral Therapy. Mol Neurobiol 2023;60:6330
    https://doi.org/10.1007/s12035-023-03472-y
  72. Chen Benkler, Alison L. O’Neil, Susannah Slepian, Fang Qian, Paul H. Weinreb, Lee L. Rubin. Aggregated SOD1 causes selective death of cultured human motor neurons. Sci Rep 2018;8
    https://doi.org/10.1038/s41598-018-34759-z
  73. Rocco Adiutori, Fabiola Puentes, Michael Bremang, Vittoria Lombardi, Irene Zubiri, Emanuela Leoni, Johan Aarum, Denise Sheer, Simon McArthur, Ian Pike, Andrea Malaspina. Analysis of circulating protein aggregates as a route of investigation into neurodegenerative disorders. 2021;3
    https://doi.org/10.1093/braincomms/fcab148
  74. Md Nadir Hassan, Faisal Nabi, Asra Nasir Khan, Murtaza Hussain, Waseem A. Siddiqui, Vladimir N. Uversky, Rizwan Hasan Khan. The amyloid state of proteins: A boon or bane?. International Journal of Biological Macromolecules 2022;200:593
    https://doi.org/10.1016/j.ijbiomac.2022.01.115
  75. Barış Çerçi, Ihsan Alp Uzay, Mustafa Kemal Kara, Pervin Dinçer. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sciences 2023;312:121204
    https://doi.org/10.1016/j.lfs.2022.121204
  76. Jing Zhang. Investigating neurological symptoms of infectious diseases like COVID-19 leading to a deeper understanding of neurodegenerative disorders such as Parkinson's disease. Front. Neurol. 2022;13
    https://doi.org/10.3389/fneur.2022.968193
  77. Yeongjin Baek, Tae-Gyun Woo, Jinsook Ahn, Dukwon Lee, Yonghoon Kwon, Bum-Joon Park, Nam-Chul Ha. Structural analysis of the overoxidized Cu/Zn-superoxide dismutase in ROS-induced ALS filament formation. Commun Biol 2022;5
    https://doi.org/10.1038/s42003-022-04017-0
  78. Greg Maguire. Amyotrophic lateral sclerosis as a protein level, non-genomic disease: Therapy with S2RM exosome released molecules. WJSC 2017;9:187
    https://doi.org/10.4252/wjsc.v9.i11.187
  79. Gadde Shareena, Dileep Kumar. Traversing through half a century research timeline on Ginkgo biloba, in transforming a botanical rarity into an active functional food ingredient. Biomedicine & Pharmacotherapy 2022;153:113299
    https://doi.org/10.1016/j.biopha.2022.113299
  80. Xue Jiang, Han Zhang, Feng Duan, Xiongwen Quan. Identify Huntington’s disease associated genes based on restricted Boltzmann machine with RNA-seq data. BMC Bioinformatics 2017;18
    https://doi.org/10.1186/s12859-017-1859-6
  81. Heiko Braak, Albert C. Ludolph, Manuela Neumann, John Ravits, Kelly Del Tredici. Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis. Acta Neuropathol 2017;133:79
    https://doi.org/10.1007/s00401-016-1633-2
  82. Marie-Victoire Guillot-Sestier, Terrence Town. Let’s make microglia great again in neurodegenerative disorders. J Neural Transm 2018;125:751
    https://doi.org/10.1007/s00702-017-1792-x