en Experimental Neurobiology

Cited by CrossRef (67)

  1. Xuan Wei, Guangshan Huang, Jiyong Liu, Jinwen Ge, Wenli Zhang, Zhigang Mei. An update on the role of Hippo signaling pathway in ischemia-associated central nervous system diseases. Biomedicine & Pharmacotherapy 2023;162:114619
    https://doi.org/10.1016/j.biopha.2023.114619
  2. Xiaoling Zhang, Wenmin Huang, Yiyun Fan, Ying Sun, Xiaoqun Ge. Role of GTPases in the regulation of mitochondrial dynamics in Parkinson's disease. Experimental Cell Research 2019;382:111460
    https://doi.org/10.1016/j.yexcr.2019.06.005
  3. Ailyn Irvita Ravinther, Hemaniswarri Dewi Dewadas, Shi Ruo Tong, Chai Nien Foo, Yu-En Lin, Cheng-Ting Chien, Yang Mooi Lim. Molecular Pathways Involved in LRRK2-Linked Parkinson’s Disease: A Systematic Review. IJMS 2022;23:11744
    https://doi.org/10.3390/ijms231911744
  4. Jasvinder Singh Bhatti, Satinder Kaur, Jayapriya Mishra, Harikrishnareddy Dibbanti, Arti Singh, Arubala P. Reddy, Gurjit Kaur Bhatti, P. Hemachandra Reddy. Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer's disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2023;1869:166798
    https://doi.org/10.1016/j.bbadis.2023.166798
  5. Tae-In Kam, Jared T. Hinkle, Ted M. Dawson, Valina L. Dawson. Microglia and astrocyte dysfunction in parkinson's disease. Neurobiology of Disease 2020;144:105028
    https://doi.org/10.1016/j.nbd.2020.105028
  6. Zhanwei Zhang, Jianbai Yu. Nurr1 exacerbates cerebral ischemia-reperfusion injury via modulating YAP-INF2-mitochondrial fission pathways. The International Journal of Biochemistry & Cell Biology 2018;104:149
    https://doi.org/10.1016/j.biocel.2018.09.014
  7. Dong Hwan Ho, Heajin Lee, Ilhong Son, Wongi Seol. G2019s LRRK2 promotes mitochondrial fission and increases TNFα-mediated neuroinflammation responses. Animal Cells and Systems 2019;23:106
    https://doi.org/10.1080/19768354.2019.1585948
  8. Peiyang Cai, Wuhao Li, Ye Xu, Hui Wang. Drp1 and neuroinflammation: Deciphering the interplay between mitochondrial dynamics imbalance and inflammation in neurodegenerative diseases. Neurobiology of Disease 2024;198:106561
    https://doi.org/10.1016/j.nbd.2024.106561
  9. Longping Yao, Jiayu Wu, Sumeyye Koc, Guohui Lu. Genetic Imaging of Neuroinflammation in Parkinson’s Disease: Recent Advancements. Front. Cell Dev. Biol. 2021;9
    https://doi.org/10.3389/fcell.2021.655819
  10. Hagai Rottenberg, Jan B. Hoek. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells 2021;10:79
    https://doi.org/10.3390/cells10010079
  11. Zahra Afghah, Xuesong Chen, Jonathan D. Geiger. Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiology of Disease 2020;134:104670
    https://doi.org/10.1016/j.nbd.2019.104670
  12. Yaqin Zhao, Bin Sun, Xuefei Fu, Zhuan Zuo, Huan Qin, Kai Yao. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomedicine & Pharmacotherapy 2024;175:116703
    https://doi.org/10.1016/j.biopha.2024.116703
  13. Chi G Weindel, Samantha L Bell, Krystal J Vail, Kelsi O West, Kristin L Patrick, Robert O Watson. LRRK2 maintains mitochondrial homeostasis and regulates innate immune responses to Mycobacterium tuberculosis. 2020;9
    https://doi.org/10.7554/eLife.51071
  14. Bohyeon Jeong, Jeong Yeob Baek, Jahong Koo, Subin Park, Young-Kyoung Ryu, Kyoung-Shim Kim, Seungjae Zhang, ChiHye Chung, Rumeysa Dogan, Hyung-Seok Choi, Dahun Um, Tae-Kyung Kim, Wang Sik Lee, Jinyoung Jeong, Won-Ho Shin, Jae-Ran Lee, Nam-Soon Kim, Da Yong Lee. Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny. Journal of Hazardous Materials 2022;426:127815
    https://doi.org/10.1016/j.jhazmat.2021.127815
  15. Dong Hwan Ho, Hyejung Kim, Daleum Nam, Mi Kyoung Seo, Sung Woo Park, Dong-Kyu Kim, Ilhong Son. Therapeutic Effect of Padina arborescens Extract on a Cell System Model for Parkinson’s Disease. NeuroSci 2024;5:301
    https://doi.org/10.3390/neurosci5030024
  16. Mengnan Lu, Huangtao Chen, Fayi Nie, Xinyi Wei, Zhiwei Tao, Jie Ma. The potential role of metformin in the treatment of Parkinson’s disease. J Bio-X Res 2020;03:27
    https://doi.org/10.1097/JBR.0000000000000055
  17. Barbara Calamini, Nathalie Geyer, Nathalie Huss-Braun, Annie Bernhardt, Véronique Harsany, Pierrick Rival, May Cindhuchao, Dietmar Hoffmann, Sabine Gratzer. Development of a physiologically relevant and easily scalable LUHMES cell-based model of G2019S LRRK2-driven Parkinson's disease. 2021;14
    https://doi.org/10.1242/dmm.048017
  18. Sara Belloli, Michele Morari, Valentina Murtaj, Silvia Valtorta, Rosa Maria Moresco, Maria Carla Gilardi. Translation Imaging in Parkinson’s Disease: Focus on Neuroinflammation. Front. Aging Neurosci. 2020;12
    https://doi.org/10.3389/fnagi.2020.00152
  19. Hyejung Kim, Hyuna Sim, Joo-Eun Lee, Mi Kyoung Seo, Juhee Lim, Yeojin Bang, Daleum Nam, Seo-Young Lee, Sun-Ku Chung, Hyun Jin Choi, Sung Woo Park, Ilhong Son, Janghwan Kim, Wongi Seol. Ciliogenesis is Not Directly Regulated by LRRK2 Kinase Activity in Neurons. Exp Neurobiol 2021;30:232
    https://doi.org/10.5607/en21003
  20. Jesus Amo-Aparicio, Charles A. Dinarello, Ruben Lopez-Vales. Metabolic reprogramming of the inflammatory response in the nervous system: the crossover between inflammation and metabolism. 2024;19:2189
    https://doi.org/10.4103/1673-5374.391330
  21. Huifang Liu, Philip Wing-Lok Ho, Chi-Ting Leung, Shirley Yin-Yu Pang, Eunice Eun Seo Chang, Zoe Yuen-Kiu Choi, Michelle Hiu-Wai Kung, David Boyer Ramsden, Shu-Leong Ho. Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2R1441Gmice. Autophagy 2021;17:3196
    https://doi.org/10.1080/15548627.2020.1850008
  22. Louis-Philippe Bernier, Elisa M. York, Brian A. MacVicar. Immunometabolism in the Brain: How Metabolism Shapes Microglial Function. Trends in Neurosciences 2020;43:854
    https://doi.org/10.1016/j.tins.2020.08.008
  23. Darryll Oliver, P. Reddy. Dynamics of Dynamin-Related Protein 1 in Alzheimer’s Disease and Other Neurodegenerative Diseases. Cells 2019;8:961
    https://doi.org/10.3390/cells8090961
  24. Xiaoqing Gong, Shuli Li, Junli Huang, Shuoyan Tan, Qianqian Zhang, Yanan Tian, Qin Li, Lingling Wang, Henry H.Y. Tong, Xiaojun Yao, Chunxia Chen, Simon Ming-Yuen Lee, Huanxiang Liu. Discovery of potent LRRK2 inhibitors by ensemble virtual screening strategy and bioactivity evaluation. European Journal of Medicinal Chemistry 2024;279:116812
    https://doi.org/10.1016/j.ejmech.2024.116812
  25. Wongi Seol, Daleum Nam, Ilhong Son. Rab GTPases as Physiological Substrates of LRRK2 Kinase. Exp Neurobiol 2019;28:134
    https://doi.org/10.5607/en.2019.28.2.134
  26. Joseph Johnson, Elizabeth Mercado-Ayon, Yesica Mercado-Ayon, Yi Na Dong, Sarah Halawani, Lucie Ngaba, David R. Lynch. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Archives of Biochemistry and Biophysics 2021;702:108698
    https://doi.org/10.1016/j.abb.2020.108698
  27. Asmaa Oun, Emmy Hoeksema, Ahmed Soliman, Famke Brouwer, Fabiola García-Reyes, Henderikus Pots, Marina Trombetta-Lima, Arjan Kortholt, Amalia M. Dolga. Characterization of Lipopolysaccharide Effects on LRRK2 Signaling in RAW Macrophages. IJMS 2023;24:1644
    https://doi.org/10.3390/ijms24021644
  28. Anamaria Jurcau, Felicia Liana Andronie-Cioara, Delia Carmen Nistor-Cseppento, Nicoleta Pascalau, Marius Rus, Elisabeta Vasca, Maria Carolina Jurcau. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson’s Disease. IJMS 2023;24:14582
    https://doi.org/10.3390/ijms241914582
  29. Syam Nair, Kristina S. Sobotka, Pooja Joshi, Pierre Gressens, Bobbi Fleiss, Claire Thornton, Carina Mallard, Henrik Hagberg. Lipopolysaccharide‐induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia 2019;67:1047
    https://doi.org/10.1002/glia.23587
  30. Zhi-Wei Zhang, Haitao Tu, Mei Jiang, Sarivin Vanan, Sook Yoong Chia, Se-Eun Jang, Wuan-Ting Saw, Zhi-Wei Ong, Dong-Rui Ma, Zhi-Dong Zhou, Jie Xu, Kai-Hua Guo, Wei-Ping Yu, Shuo-Chien Ling, Richard A. Margolin, Daniel G. Chain, Li Zeng, Eng-King Tan. The APP intracellular domain promotes LRRK2 expression to enable feed-forward neurodegenerative mechanisms in Parkinson’s disease . Sci. Signal. 2022;15
    https://doi.org/10.1126/scisignal.abk3411
  31. Ricardo Quiroz-Baez, Karina Hernández-Ortega, Eduardo Martínez-Martínez. Insights Into the Proteomic Profiling of Extracellular Vesicles for the Identification of Early Biomarkers of Neurodegeneration. Front. Neurol. 2020;11
    https://doi.org/10.3389/fneur.2020.580030
  32. Yuqian Liu, Bohan Zhang, Ruonan Duan, Yiming Liu. Mitochondrial DNA Leakage and cGas/STING Pathway in Microglia: Crosstalk Between Neuroinflammation and Neurodegeneration. Neuroscience 2024;548:1
    https://doi.org/10.1016/j.neuroscience.2024.04.009
  33. Eun-Mi Hur, Byoung Dae Lee. LRRK2 at the Crossroad of Aging and Parkinson’s Disease. Genes 2021;12:505
    https://doi.org/10.3390/genes12040505
  34. Barbara M. Fenner, Mark E. Fenner, Natalie Prowse, Shawn P. Hayley. LRRK2 and WAVE2 regulate microglial‐transition through distinct morphological phenotypes to induce neurotoxicity in a novel two‐hit in vitro model of neurodegeneration. Journal Cellular Physiology 2022;237:1013
    https://doi.org/10.1002/jcp.30588
  35. Dong-Hwan Ho, Daleum Nam, Mikyoung Seo, Sung-Woo Park, Wongi Seol, Ilhong Son. LRRK2 Inhibition Mitigates the Neuroinflammation Caused by TLR2-Specific α-Synuclein and Alleviates Neuroinflammation-Derived Dopaminergic Neuronal Loss. Cells 2022;11:861
    https://doi.org/10.3390/cells11050861
  36. Zijian Zheng, Shushan Zhang, Hanwen Zhang, Zhongzheng Gao, Xiangrong Wang, Xinjie Liu, Cheng Xue, Longping Yao, Guohui Lu, Sachchida Nand Rai. Mechanisms of Autoimmune Cell in DA Neuron Apoptosis of Parkinson’s Disease: Recent Advancement. Oxidative Medicine and Cellular Longevity 2022;2022:1
    https://doi.org/10.1155/2022/7965433
  37. Xiao-Yan Yao, Li-Na Guan, Qi Chen, Chao Ren. LRRK2 G2019S and Parkinson’s disease: insight from Neuroinflammation. 2023;100:4
    https://doi.org/10.1093/postmj/qgad080
  38. Anna S. Vetchinova, Marina R. Kapkaeva, Mikhail V. Ivanov, Kristina A. Kutukova, Natalia M. Mudzhiri, Lydia E. Frumkina, Anatoly V. Brydun, Vladimir S. Sukhorukov, Sergey N. Illarioshkin. Mitochondrial Dysfunction in Dopaminergic Neurons Derived from Patients with LRRK2- and SNCA-Associated Genetic Forms of Parkinson’s Disease. CIMB 2023;45:8395
    https://doi.org/10.3390/cimb45100529
  39. Hao Zhao, Wenlong Pan, Lihua Chen, Yongchun Luo, Ruxiang Xu. Nur77 promotes cerebral ischemia–reperfusion injury via activating INF2-mediated mitochondrial fragmentation. J Mol Hist 2018;49:599
    https://doi.org/10.1007/s10735-018-9798-8
  40. Eduardo Benarroch. What Is the Role of Mitochondrial Fission in Neurologic Disease?. Neurology 2022;98:662
    https://doi.org/10.1212/WNL.0000000000200233
  41. Dong Hwan Ho, Daleum Nam, Mi Kyoung Seo, Sung Woo Park, Ilhong Son, Wongi Seol. Leucine-rich Repeat Kinase 2 (LRRK2) Phosphorylates Rab10 in Glia and Neurons. BSL 2019;25:177
    https://doi.org/10.15616/BSL.2019.25.2.177
  42. Grażyna Söderbom. Metabolic and Bioenergetic Drivers of Neurodegenerative Disease: Neurodegenerative Disease Research and Commonalities with Metabolic Diseases. 2019.
    https://doi.org/10.1016/bs.irn.2020.02.009
  43. Ivan Nyarko-Danquah, Edward Pajarillo, Sanghoon Kim, Alexis Digman, Harpreet Kaur Multani, Itunu Ajayi, Deok-Soo Son, Michael Aschner, Eunsook Lee. Microglial Sp1 induced LRRK2 upregulation in response to manganese exposure, and 17β-estradiol afforded protection against this manganese toxicity. NeuroToxicology 2024;103:105
    https://doi.org/10.1016/j.neuro.2024.05.007
  44. Shishi Luo, Danling Wang, Zhuohua Zhang. Post-translational modification and mitochondrial function in Parkinson’s disease. Front. Mol. Neurosci. 2024;16
    https://doi.org/10.3389/fnmol.2023.1329554
  45. Hannah M. Bailey, Mark R. Cookson. How Parkinson’s Disease-Linked LRRK2 Mutations Affect Different CNS Cell Types. JPD 2024:1
    https://doi.org/10.3233/JPD-230432
  46. Ali Boustani, Jacqueline R. Kulbe, Mohammadsobhan Sheikh Andalibi, Josué Pérez-Santiago, Sanjay R. Mehta, Ronald J. Ellis, Jerel Adam Fields. Mitochondrial DNA and Electron Transport Chain Protein Levels Are Altered in Peripheral Nerve Tissues from Donors with HIV Sensory Neuropathy: A Pilot Study. IJMS 2024;25:4732
    https://doi.org/10.3390/ijms25094732
  47. Seonghyun Lee, Hyunji Lee, Gayoung Baek, Eunji Namgung, Joo Min Park, Sanghun Kim, Seongho Hong, Jin-Soo Kim. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases. Genome Biol 2022;23
    https://doi.org/10.1186/s13059-022-02782-z
  48. Mengfei Zhang, Chaoyi Li, Jie Ren, Huakun Wang, Fang Yi, Junjiao Wu, Yu Tang. The Double-Faceted Role of Leucine-Rich Repeat Kinase 2 in the Immunopathogenesis of Parkinson’s Disease. Front. Aging Neurosci. 2022;14
    https://doi.org/10.3389/fnagi.2022.909303
  49. Zhihao Qi, Zhen Huang, Feng Xie, Linxi Chen. Dynamin‐related protein 1: A critical protein in the pathogenesis of neural system dysfunctions and neurodegenerative diseases. Journal Cellular Physiology 2019;234:10032
    https://doi.org/10.1002/jcp.27866
  50. Chand Raza, Rabia Anjum, Noor ul Ain Shakeel. Parkinson's disease: Mechanisms, translational models and management strategies. Life Sciences 2019;226:77
    https://doi.org/10.1016/j.lfs.2019.03.057
  51. Andre F. Batista, Tayná Rody, Leticia Forny-Germano, Suzana Cerdeiro, Maria Bellio, Sergio T. Ferreira, Douglas P. Munoz, Fernanda G. De Felice. Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory impairment induced by amyloid-β oligomers. J Neuroinflammation 2021;18
    https://doi.org/10.1186/s12974-021-02099-x
  52. Zheng-ping Huang, Shu-fen Liu, Jian-long Zhuang, Lin-yi Li, Mi-mi Li, Ya-li Huang, Yan-hong Chen, Xiang-rong Chen, Shu Lin, Li-chao Ye, Chun-nuan Chen. Role of microglial metabolic reprogramming in Parkinson's disease. Biochemical Pharmacology 2023;213:115619
    https://doi.org/10.1016/j.bcp.2023.115619
  53. Chris Rudyk, Zach Dwyer, Shawn Hayley. Leucine-rich repeat kinase-2 (LRRK2) modulates paraquat-induced inflammatory sickness and stress phenotype. J Neuroinflammation 2019;16
    https://doi.org/10.1186/s12974-019-1483-7
  54. Yingying Gu, Jiaying Zhang, Xinru Zhao, Wenyuan Nie, Xiaole Xu, Mingxuan Liu, Xiaoling Zhang. Olfactory dysfunction and its related molecular mechanisms in Parkinson’s disease. 2024;19:583
    https://doi.org/10.4103/1673-5374.380875
  55. Alexander Poltorak. Cell death: All roads lead to mitochondria. Current Biology 2022;32:R891
    https://doi.org/10.1016/j.cub.2022.07.025
  56. Rebecca L. Wallings, Mary K. Herrick, Malú Gámez Tansey. LRRK2 at the Interface Between Peripheral and Central Immune Function in Parkinson’s. Front. Neurosci. 2020;14
    https://doi.org/10.3389/fnins.2020.00443
  57. Maowei He, Zimin Xiang, Libin Xu, Yanting Duan, Fangqin Li, Jianmei Chen. Lipopolysaccharide induces human olfactory ensheathing glial apoptosis by promoting mitochondrial dysfunction and activating the JNK-Bnip3-Bax pathway. Cell Stress and Chaperones 2019;24:91
    https://doi.org/10.1007/s12192-018-0945-7
  58. Katharina E. Rosenbusch, Asmaa Oun, Oana Sanislav, Sui T. Lay, Ineke Keizer-Gunnink, Sarah J. Annesley, Paul R. Fisher, Amalia M. Dolga, Arjan Kortholt. A Conserved Role for LRRK2 and Roco Proteins in the Regulation of Mitochondrial Activity. Front. Cell Dev. Biol. 2021;9
    https://doi.org/10.3389/fcell.2021.734554
  59. Sonia Azeggagh, Daniel C. Berwick. The development of inhibitors of leucine‐rich repeat kinase 2 (LRRK2) as a therapeutic strategy for Parkinson's disease: the current state of play. British J Pharmacology 2022;179:1478
    https://doi.org/10.1111/bph.15575
  60. Jiarui Hu, Dan Zhang, Keyue Tian, Changyu Ren, Heng Li, Congcong Lin, Xiaoli Huang, Jie Liu, Wuyu Mao, Jifa Zhang. Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. European Journal of Medicinal Chemistry 2023;256:115475
    https://doi.org/10.1016/j.ejmech.2023.115475
  61. Hyoun Joong Kim, S.D.N.K. Bathige, Hyung-Bae Jeon, Seung-Hyeon Kim, Chen Yu, Woonchul Kang, Kangrae Noh, Eunil Lee, Byeong Seong Lim, Dong Hun Shin. Development of a duplex qPCR assay for the detection of coinfection in eels by Japanese eel endothelial cell-infecting virus and Anguillid herpesvirus-1. Aquaculture 2024;578:740091
    https://doi.org/10.1016/j.aquaculture.2023.740091
  62. Chi G. Weindel, Eduardo L. Martinez, Xiao Zhao, Cory J. Mabry, Samantha L. Bell, Krystal J. Vail, Aja K. Coleman, Jordyn J. VanPortfliet, Baoyu Zhao, Allison R. Wagner, Sikandar Azam, Haley M. Scott, Pingwei Li, A. Phillip West, Jason Karpac, Kristin L. Patrick, Robert O. Watson. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 2022;185:3214
    https://doi.org/10.1016/j.cell.2022.06.038
  63. Grace M.E.P. Lawrence, Caroline L. Holley, Kate Schroder. Parkinson's disease: connecting mitochondria to inflammasomes. Trends in Immunology 2022;43:877
    https://doi.org/10.1016/j.it.2022.09.010
  64. Dong Hwan Ho, Wongi Seol, Ilhong Son. Upregulation of the p53-p21 pathway by G2019S LRRK2 contributes to the cellular senescence and accumulation of α-synuclein. Cell Cycle 2019;18:467
    https://doi.org/10.1080/15384101.2019.1577666
  65. Ruqayya Afridi, Md Habibur Rahman, Kyoungho Suk. Implications of glial metabolic dysregulation in the pathophysiology of neurodegenerative diseases. Neurobiology of Disease 2022;174:105874
    https://doi.org/10.1016/j.nbd.2022.105874
  66. Adina N. MacMahon Copas, Sarah F. McComish, Jean M. Fletcher, Maeve A. Caldwell. The Pathogenesis of Parkinson's Disease: A Complex Interplay Between Astrocytes, Microglia, and T Lymphocytes?. Front. Neurol. 2021;12
    https://doi.org/10.3389/fneur.2021.666737
  67. Yan Hu, Yile Zhou, Yajie Yang, Haihong Tang, Yuan Si, Zhouyi Chen, Yi Shi, Hao Fang. Metformin Protects Against Diabetes-Induced Cognitive Dysfunction by Inhibiting Mitochondrial Fission Protein DRP1. Front. Pharmacol. 2022;13
    https://doi.org/10.3389/fphar.2022.832707