en Experimental Neurobiology

Cited by CrossRef (25)

  1. Yibo Zhao, Nikoleta Vavouraki, Ruth C. Lovering, Valentina Escott-Price, Kirsten Harvey, Patrick A. Lewis, Claudia Manzoni, Miguel A. Andrade-Navarro. Tissue specific LRRK2 interactomes reveal a distinct striatal functional unit. PLoS Comput Biol 2023;19:e1010847
    https://doi.org/10.1371/journal.pcbi.1010847
  2. Chiao-Wei Lin, Yu-Ju Peng, Yuan-Yu Lin, Harry John Mersmann, Shih-Torng Ding. LRRK2 Regulates CPT1A to Promote β-Oxidation in HepG2 Cells. Molecules 2020;25:4122
    https://doi.org/10.3390/molecules25184122
  3. Shu Ran, Min-Fei Zhao, Ling-Li Huang, Bao-Lin Liu. Identification of LRRK2 gene related to sarcopenia and neuroticism using weighted gene co-expression network analysis. Journal of Affective Disorders 2023;325:675
    https://doi.org/10.1016/j.jad.2023.01.042
  4. Andrea Pirone, Federica Ciregia, Giulia Lazzarini, Vincenzo Miragliotta, Maurizio Ronci, Mariachiara Zuccarini, Lorenzo Zallocco, Daniela Beghelli, Maria Rosa Mazzoni, Antonio Lucacchini, Laura Giusti. Proteomic Profiling Reveals Specific Molecular Hallmarks of the Pig Claustrum. Mol Neurobiol 2023;60:4336
    https://doi.org/10.1007/s12035-023-03347-2
  5. Zhi Dong Zhou, Ling Xiao Yi, Dennis Qing Wang, Tit Meng Lim, Eng King Tan. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl Neurodegener 2023;12
    https://doi.org/10.1186/s40035-023-00378-6
  6. Anurag TK Baidya, Sonam Deshwal, Bhanuranjan Das, Alen T Mathew, Bharti Devi, Rajat Sandhir, Rajnish Kumar. Catalyzing a Cure: Discovery and development of LRRK2 inhibitors for the treatment of Parkinson’s disease. Bioorganic Chemistry 2024;143:106972
    https://doi.org/10.1016/j.bioorg.2023.106972
  7. Dominika Natalia Wojewska, Arjan Kortholt. LRRK2 Targeting Strategies as Potential Treatment of Parkinson’s Disease. Biomolecules 2021;11:1101
    https://doi.org/10.3390/biom11081101
  8. Darren M. O’Hara, Grishma Pawar, Suneil K. Kalia, Lorraine V. Kalia. LRRK2 and α-Synuclein: Distinct or Synergistic Players in Parkinson’s Disease?. Front. Neurosci. 2020;14
    https://doi.org/10.3389/fnins.2020.00577
  9. Valina L. Dawson, Ted M. Dawson. Promising disease-modifying therapies for Parkinson’s disease. Sci. Transl. Med. 2019;11
    https://doi.org/10.1126/scitranslmed.aba1659
  10. Charlotte F. Brzozowski, Baraa A. Hijaz, Vijay Singh, Nolwazi Z. Gcwensa, Kaela Kelly, Edward S. Boyden, Andrew B. West, Deblina Sarkar, Laura A. Volpicelli-Daley. Inhibition of LRRK2 kinase activity promotes anterograde axonal transport and presynaptic targeting of α-synuclein. acta neuropathol commun 2021;9
    https://doi.org/10.1186/s40478-021-01283-7
  11. Kaitlyn M L Cramb, Dayne Beccano-Kelly, Stephanie J Cragg, Richard Wade-Martins. Impaired dopamine release in Parkinson’s disease. 2023;146:3117
    https://doi.org/10.1093/brain/awad064
  12. Xiaobo Wang, Emma Whelan, Zhaohui Liu, Chun-Feng Liu, Wanli W. Smith. Controversy of TMEM230 Associated with Parkinson’s Disease. Neuroscience 2021;453:280
    https://doi.org/10.1016/j.neuroscience.2020.11.004
  13. Alicia Garrido, Leticia Pérez‐Sisqués, Cristina Simonet, Genís Campoy‐Campos, Júlia Solana‐Balaguer, Núria Martín‐Flores, Manel Fernández, Marta Soto, Donina Obiang, Ana Cámara, Francesc Valldeoriola, Esteban Muñoz, Yaroslau Compta, Esther Pérez‐Navarro, Jordi Alberch, Eduardo Tolosa, María‐José Martí, Mario Ezquerra, Cristina Malagelada, Rubén Fernández‐Santiago. Increased Phospho‐AKT in Blood Cells from LRRK2 G2019S Mutation Carriers. Annals of Neurology 2022;92:888
    https://doi.org/10.1002/ana.26469
  14. Orly Goldstein, Mali Gana-Weisz, Fergal Casey, Hila Meltzer-Fridrich, Or Yaacov, Yedael Y. Waldman, Dongdong Lin, Yael Mordechai, Jing Zhu, Patrick F. Cullen, Nurit Omer, Tamara Shiner, Avner Thaler, Anat Bar-Shira, Anat Mirelman, Sally John, Nir Giladi, Avi Orr-Urtreger. PARK16 locus: Differential effects of the non-coding rs823114 on Parkinson’s disease risk, RNA expression, and DNA methylation. Journal of Genetics and Genomics 2021;48:341
    https://doi.org/10.1016/j.jgg.2020.10.010
  15. Marco Hadisurya, Li Li, Kananart Kuwaranancharoen, Xiaofeng Wu, Zheng-Chi Lee, Roy N. Alcalay, Shalini Padmanabhan, W. Andy Tao, Anton Iliuk. Quantitative proteomics and phosphoproteomics of urinary extracellular vesicles define putative diagnostic biosignatures for Parkinson’s disease. Commun Med 2023;3
    https://doi.org/10.1038/s43856-023-00294-w
  16. Alice Filippini, Massimo Gennarelli, Isabella Russo. Leucine-rich repeat kinase 2-related functions in GLIA: an update of the last years. 2021;49:1375
    https://doi.org/10.1042/BST20201092
  17. Christopher A. Guevara, Bridget A. Matikainen-Ankney, Nebojsa Kezunovic, Katherine LeClair, Alexander P. Conway, Caroline Menard, Meghan E. Flanigan, Madeline Pfau, Scott J. Russo, Deanna L. Benson, George W. Huntley. LRRK2 mutation alters behavioral, synaptic, and nonsynaptic adaptations to acute social stress. Journal of Neurophysiology 2020;123:2382
    https://doi.org/10.1152/jn.00137.2020
  18. Takuya Murata, Yuka Unno, Mitsunori Fukuda, Naoko Utsunomiya-Tate. The dynamic structure of Rab35 is stabilized in the presence of GTP under physiological conditions. Biochemistry and Biophysics Reports 2020;23:100776
    https://doi.org/10.1016/j.bbrep.2020.100776
  19. Zhi Dong Zhou, Wuan Ting Saw, Patrick Ghim Hoe Ho, Zhi Wei Zhang, Li Zeng, Ya Yin Chang, Alfred Xu Yang Sun, Dong Rui Ma, Hong Yan Wang, Lei Zhou, Kah Leong Lim, Eng-King Tan. The role of tyrosine hydroxylase–dopamine pathway in Parkinson’s disease pathogenesis. Cell. Mol. Life Sci. 2022;79
    https://doi.org/10.1007/s00018-022-04574-x
  20. Zhi-Wei Zhang, Haitao Tu, Mei Jiang, Sarivin Vanan, Sook Yoong Chia, Se-Eun Jang, Wuan-Ting Saw, Zhi-Wei Ong, Dong-Rui Ma, Zhi-Dong Zhou, Jie Xu, Kai-Hua Guo, Wei-Ping Yu, Shuo-Chien Ling, Richard A. Margolin, Daniel G. Chain, Li Zeng, Eng-King Tan. The APP intracellular domain promotes LRRK2 expression to enable feed-forward neurodegenerative mechanisms in Parkinson’s disease . Sci. Signal. 2022;15
    https://doi.org/10.1126/scisignal.abk3411
  21. Graham H. Davis, Aprem Zaya, Margaret M. Panning Pearce. Impairment of the Glial Phagolysosomal System Drives Prion-Like Propagation in aDrosophilaModel of Huntington's Disease. J. Neurosci. 2024;44:e1256232024
    https://doi.org/10.1523/JNEUROSCI.1256-23.2024
  22. Alazne Arrazola Sastre, Miriam Luque Montoro, Patricia Gálvez-Martín, Hadriano M Lacerda, Alejandro Lucia, Francisco Llavero, José Luis Zugaza. Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. IJMS 2020;21:6312
    https://doi.org/10.3390/ijms21176312
  23. Gunjan Thakur, Vikas Kumar, Keun Woo Lee, Chungkil Won. Structural Insights and Development of LRRK2 Inhibitors for Parkinson’s Disease in the Last Decade. Genes 2022;13:1426
    https://doi.org/10.3390/genes13081426
  24. Noémie Cresto, Camille Gardier, Marie-Claude Gaillard, Francesco Gubinelli, Pauline Roost, Daniela Molina, Charlène Josephine, Noëlle Dufour, Gwenaëlle Auregan, Martine Guillermier, Suéva Bernier, Caroline Jan, Pauline Gipchtein, Philippe Hantraye, Marie-Christine Chartier-Harlin, Gilles Bonvento, Nadja Van Camp, Jean-Marc Taymans, Karine Cambon, Géraldine Liot, Alexis-Pierre Bemelmans, Emmanuel Brouillet. The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo. IJMS 2021;22:6760
    https://doi.org/10.3390/ijms22136760
  25. Tian Zhang, Ke-Gang Linghu, Jia Tan, Mingming Wang, Diao Chen, Yan Shen, Junchao Wu, Mingjun Shi, Yuxia Zhou, Lei Tang, Lirong Liu, Zheng-Hong Qin, Bing Guo. TIGAR exacerbates obesity by triggering LRRK2-mediated defects in macroautophagy and chaperone-mediated autophagy in adipocytes. Autophagy 2024:1
    https://doi.org/10.1080/15548627.2024.2338576