
INTRODUCTION

 Improvements to magnetic resonance imaging (MRI) have fa-
cilitated the process of imaging a patient’s brain, making it capable 
to observe changes in a disease infected brain noninvasively (not 
requiring harmful radiation or insertion of any equipment into the 
brain). Studies have utilized various MRI techniques to measure 
certain qualities of the brain and detect biomarkers to identify dis-
eases, such as neuromelanin in Parkinson’s [1] and hippocampal 
volume loss in Alzheimer’s [2]. However, there are current limita-

tions to human MRI, one of which includes the length of the time 
needed to take certain images for visualizing biomarkers with 
proper contrast and signal to noise ratio (SNR). Certain imaging 
techniques require longer scan time to be able to image certain 
deep brain structures like the substantia nigra, which can cause 
discomfort in the patient, as well as induce motions and artifacts. 
Additionally, it is very difficult to recreate certain environments 
due to the lack of control in the disease state of patients being im-
aged. For example, some patients with Parkinson’s disease express 
non-motor symptoms rather than express the more commonly 
known tremors and rigidity [3], which makes studying early diag-
nosis of Parkinson’s difficult. As such, mouse models are still being 
utilized for MRI studies. Using mouse models enables a lot more 
control over the experiment environment, with a large amount of 
disease models being available [4] as well as being able to image all 
states of the diseased brain. In addition, the issue with long imag-
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ing time becomes less of an issue with model brains, which allows 
for a clearer detection in biomarkers and consistent results. 

Diffusion tensor imaging (DTI) has seen increased use in un-
derstanding neural networks between brain structures. Observing 
structural connections generated using DTI tractography between 
basal ganglia has been a focal point in studying progression of 
diseases like Parkinson’s and Alzheimer’s [5-7]. The basal ganglia 
are a group of interconnected subcortical structures that medi-
ate various functions of the body, such as voluntary movements, 
learning and cognition [8]. Alterations to basal ganglia structural 
connections, observed by lowered intensities and factional an-
isotropy (FA) values of white matter connecting basal ganglia 
structures, have been associated with Parkinson’s [9]. DTI has also 
been used to observe quantitative improvements in patients that 
underwent Parkinson’s treatment such as deep brain stimulation. 
Previous studies regarding deep brain stimulation of basal ganglia 
structures like subthalamic nucleus have shown improvements in 
connectivity strength [10]. Additionally, deep brain stimulation of 
connections between the basal ganglia and cerebellum has shown 
visual improvements in reducing Parkinson’s symptoms [11]. 
Despite the extensive studies on the potentials of utilizing DTI to 
study structural connectivity of the basal ganglia, the basal ganglia 
connectomes have not been yet established for the mouse, an im-
portant animal model used to test treatment for neuronal diseases.

DTI has been used historically to study various aspects of the 
mouse brain. In one study, DTI was used to observe the changes 
in the white matter of a developing mouse brain, as well as distin-
guishing cerebral structures using color coded anisotropy maps 
[12]. Another study utilized DTI to identify connections between 
the mouse amygdala and various targets, mainly to describe how 
visual and limbic systems were connected [13]. Additionally, DTI 
was used to study the deterioration of mouse tissues under various 
conditions. One study was able to characterize changes in struc-
tural connectivity of amyotrophic lateral sclerosis mouse spinal 
cord using DTI [14]. Studies were also able to detect DTI changes 
in the substantia nigra of 6-hydroxydopamine [15] and MPTP 
[16] Parkinson’s mouse models. As such, utilizing DTI for studying 
the mouse basal ganglia has the potential for enhancing our un-
derstanding of mechanisms that influence or are influenced by the 
basal ganglia. 

In this study, we present a comprehensive methodology in seg-
menting the basal ganglia of the mouse (e.g., globus pallidus exter-
nal, globus pallidus internal, subthalamic nucleus, substantia nigra 
reticular, substantia nigra compact, caudoputamen), as well as 
generating a probabilistic tractography between each segmented 
structures using 9.4T MRI. 

MATERIALS AND METHODS

Mouse

Animal experiments and procedures were carried out in compli-
ance with the Lee Gil Ya Cancer and Diabetes Institutional Center 
of Animal Care and Use. A 8 week old C57BL/6N mouse was 
chosen for this experiment. Mouse was transcardially perfused 
and fixed with 4% paraformaldehyde and 0.1% Magnevist®. After 
perfusion, the mouse was decapitated and had excess skin/muscle 
removed from the skull. The mouse brain with the remaining in-
tact skulls were post-fixed in 0.1% Magnevist/phosphate buffer at 
4℃ for 4 days. Samples were removed from fixation solutions and 
tapped with a paper towel. Before imaging, brain, still intact with 
skulls were placed in a custom-made MRI compatible tube and 
were immersed in Fomblin [17]. 

The extracted brain was then imaged using a 9.4T Bruker Bio-
spec horizontal bore, dedicated animal scanner (Bruker Biospin, 
Ettlingen, Germany). A four-channel receive-only phased array 
head coil was used for receiving. The T2-weighted images were 
acquired using a 3D turbo rare T2 sequence (echo time (TE)=42.5 
ms; repetition time (TR)=3000 ms; flip angle=180o; field of view 
(FOV)=1.2×1.2×1.2 cm3; matrix=120×120×150; bandwidth=75 
kHz; total imaging time=52 min) and the diffusion tensor im-
ages were acquired using 2D EPI diffusion tensor sequence (echo 
time=33.63 ms; repetition time=12000 ms; flip angle=15o; field 
of view=1.8×1.8 cm2; matrix=120×120; slice thickness=150 µm; 
bandwidth=300 kHz; b-value=2000 s/mm2; diffusion direc-
tions=30; total imaging time=2 hr 1 min). 

Segmentation and tractography

We referenced previous studies to model our experiment and 
figures for visualization [18, 19]. To quantify the connections be-
tween each basal ganglia structure, we first segmented each basal 
ganglia structure from a diffusion image (shown in Fig. 1 in 3D 
structures, as well as their locations in the mouse brain). We then 
generated probabilistic tractography for each and between every 
segmented structure. For each segmented structure, we generated 
individual connectivity maps (shown in Fig. 2 as red fibers and 
blue structures overlaid on top of a T2 image), which represents 
the fibers that extend from the structure of interest to the rest of 
the brain. Additionally, utilizing waypoint connectivity mapping, 
we generated probabilistic tractography between two different re-
gions (Fig. 3), which was done by generating random tractography 
that stems from one structure, and removing fibers that did not 
pass through the two chosen structures.

Segmentation of basal ganglia structures (e.g., globus pallidus 
external (GPe), globus pallidus internal (GPi), subthalamic nucleus 
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(STN), substantia nigra reticular (SNr), substantia nigra compact 
(SNc), caudoputamen (CP)) was done using Atlas Normalization 
Toolbox using elastiX (ANTX) [20-22], a MATLAB based toolbox, 
and FMRIB software library (FSL) [23]. The following steps were 
done using ANTX. The T2 and DTI DICOM files were converted 
into NIFTI files. The b0 image from the converted DTI NIFTI file 
were extracted for segmentation of structures. A modified ver-
sion of SPM8, SPMMouse [24] was used to segment extracted b0 
image into tissue compartment maps of grey and white matter, as 
well as the cerebrospinal fluid. Subsequently, by using ELASTIX 
[25], the extracted b0 image was normalized to Allen space using 
12-parameter affine transformation and nonlinear image warping. 
The resulting transformation matrix generated from the normal-
ization was used to transform Allen atlas labels (bilateral GPe, GPi, 
STN, SNr, SNc, CP) [26] back to native DTI space. 

The following steps were done using FSL. The DTI image con-
verted from ANTX were eddy corrected using FSL’s eddycorrect 
[27]. Eddy correct is a tool for correcting current induced distor-
tions and subject motion. Each DTI volume from the DTI image 
undergoes mutual information-based rigid-body registration to 
the b=0 image, reducing misalignment and distortion found in 
raw DTI image. After eddy correction, the diffusion tensors were 
fitted on eddy corrected DTI image using DTIFIT. After checking 
the results of DTIFIT for correct orientation of vector orientations, 
BEDPOSTX, Bayesian Estimation of Diffusion Parameters Ob-
tained using Sampling Techniques [28], was run to model crossing 
fibers within each voxel of the DTI image (Fig. 4). BEDPOSTX 
operates by running Markov Chain Monte Carlo sampling to 
model distributions of diffusion parameters (fiber orientations) at 
each voxel. Number of fibers per voxel were set to three to account 
for multiple fiber orientations. Using the fiber orientation distribu-
tions applied by BEDPOSTX, probabilistic tractography was gen-
erated between the previously segmented structures (referred to as 

waypoints) using PROBTRACKX [29]. PROBTRACKX computes 
streamlines (in this case, 5000) through sampled fiber orientations 
of each voxel in a segmented region, then calculates the probability 
of the generated streamlines. The number of fiber counts gener-
ated through probabilistic tractography was used for statistical 
analysis.

For visual inspection and comparison of Allen Brain mouse 
neural tracer injection data and our diffusion connectivity data, 
injection (where neural tracers were injected, usually in structures) 
and projection (data describing the spread of neural tracer) data 
involving neural tracer experiments in segmented structures (GPe, 
GPi, STN, etc.) were obtained using Allen Mouse Brain Software 
Development Kit (http://alleninstitute.github.io/AllenSDK/con-
nectivity.html). The template image, which is the Allen Mouse 
brain image space the injection and projection data are registered 
to, are first transformed into our mouse diffusion data space using 
ANTX coregistration. Using the generated matrix file describ-
ing the transformation of template space to diffusion space, the 
injection data was registered to our diffusion data space. After the 
registration, PROBTRACKX was run using the same settings used 
to run our native data and segmented masks, but using the newly 
registered injection data as seed mask. The resulting 3D fiber data 
was transformed back to Allen Mouse brain image space by using 
the inverse of the matrix generated to transform template image 
into our diffusion data space for tracer and diffusion tractography 
comparison. 

Statistics

The number of fiber counts between pairs of segmented struc-
tures were analyzed. PROBTRACKX seeds fibers from the voxels 
of segmented regions, meaning that fibers generated using PROB-
TRACKX may vary depending on the volume of the segmented 
seed regions. To minimize this effect, the number of fiber counts 

Fig. 1. 3D representations of segmented basal ganglia structures. (A) Segmented bilateral structures are color coded: green, caudoputamen; orange, 
globus pallidus external; red, globus pallidus internal; yellow, subthalamic nucleus;  purple, substantia nigra compact; blue, substantia nigra reticular. (B) 
Segmented structures are displayed within a 3D transparent mouse brain rendering as a reference of their location within the mouse brain.
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generated between two pairs (a seed and a target) were normalized 
by dividing the fiber counts by the seed volume. Normalized fiber 
counts of each pair were represented in percentage of total num-
ber of fibers connecting each pair to compare levels of connectiv-
ity between each basal ganglia structure. Additionally, the normal-
ized fibers generated between left and left, left and right, right and 

left, right and right structures were organized into a connectivity 
matrix, represented in a log10 scale.

RESULTS

The percentage of connectivity between each segmented struc-

Fig. 2. Individual connectivity 
generated by PROBTRACKX. 
2D representations of individual 
connectivity of (top to bottom) 
caudoputamen, globus pallidus 
external, globus pallidus internal, 
substantia nigra compact, sub-
stantia nigra reticular, subtha-
lamic nucleus, overlaid on top of 
T2 anatomical image.
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tures are shown in Table 1. The percentages describe the amount of 
normalized fibers that pass through the seed structure also passes 
through the target structure. Some percentages were lower than 
100% due to the fact that not all fibers generated from a seed struc-
ture pass through the segmented structures and some percentages 
were higher than 100% due to the fact that most fibers that passed 
through a seed structure also passed through multiple target struc-
tures. Highest levels of connectivity were found mostly between 

structures that were closest to each other with 92.75% of fibers that 
pass through SNc connect to SNr and 87.36% of fibers that pass 
through GPe connect to CP. The lowest levels of connectivity were 
found between SNc and GPi at 0.04% (with SNc as seed and GPi 
as target), and CP and SNc also at 0.04% (with CP as seed and SNc 
as target). The relative levels of direct connections (which were 
calculated by dividing each number of fibers by sum of the fibers 
generated between all structures) are shown in Table 2. Similar to 

Fig. 3. Waypoint connectivity generated by PROBTRACKX. 3D representations of waypoint connectivity between structures with the highest relative 
levels of connectivity. (A) Waypoint connectivity between caudoputamen and globus pallidus external. (B) Waypoint connectivity between globus pal-
lidus external and globus pallidus internal. (C) Waypoint connectivity between caudoputamen and globus pallidus internal. (D) Waypoint connectivity 
between substantia nigra reticular and substantia nigra compact. (E) Waypoint connectivity between subthalamic nucleus and substantia nigra reticular. 
(F) Waypoint connectivity between subthalamic nucleus and substantia nigra compact. 

Fig. 4. Results from using BED-
POSTX to fit fiber orientations at 
each voxel. (A) T2 anatomic im-
age of mouse brain used for dif-
fusion tractography. (B) Colored 
fractional anisotrophy diffusion 
image used in this experiment. 
(C) Example of fiber orienta-
tions generated at each voxel 
using BEDPOSTX. Some voxels 
have multiple orientations (up to 
three).
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Table 1, the connections were strongest between SNr and SNc at 
92.7% and between CP and GPi at 84.79%. A visual representation 
of relative connectivity shown in Table 2 is shown in Fig. 5.

Waypoint connectivity using PROBTRACKX produced two 
sets of numbers, one for seed to target fibers and target to seed 

fibers. The number of fibers that are generated from probabilistic 
tractography are dependent on the seed region used for PROB-
TRACKX, which meant that the fibers generated between seed 
structure A and target structure B were different from the fibers 

Table 1. Percentages of fibers generated from seed structures that pass 
through target structures

Target 
struc-
tures

Seed structures

GPe GPi STN SNr SNc CP

% % % % % %

GPe 78.03 4.20 0.28 0.12 20.59
GPi 35.35 5.17 0.08 0.04 3.28
STN 2.22 6.21 11.40 6.67 0.25
SNr 0.82 0.53 28.57 92.04 0.12
SNc 0.16 0.16 14.39 71.63 0.04
CP 87.36 48.79 5.51 0.58 0.35  

Numbers represents the percentages of fibers generated from a seed struc-
ture that also reached a target structure. Each number was generated from 
the averages of left seed structure to left target structure and right seed 
structure to right target structure. Total percentages exceed 100% for each 
seed structure due to fibers generated from seed structures connecting 
more than one target structure. Both target and seed structures are GPe, 
globus pallidus external; GPi, globus pallidus internal; STN, subthalamic 
nucleus; SNr, substantia nigra reticular; SNc, substantia nigra compact; CP, 
caudoputamen. 

Table 2. Percentages of relative connectivity between a seed structure 
and target structures

Target 
struc-
tures

Seed structures

GPe GPi STN SNr SNc CP

GPe - 58.36% 7.27% 0.33% 0.12% 84.79%
GPi 28.07% - 8.93% 0.10% 0.04% 13.50%

STN 1.76% 4.64% - 13.57% 6.73% 1.04%

SNr 0.65% 0.40% 49.40% - 92.75% 0.49%

SNc 0.13% 0.12% 24.88% 85.31% - 0.18%

CP 69.38% 36.49% 9.52% 0.69% 0.35% -

Numbers represents the relative percentages of diffusion fibers generated 
between each seed structure and all other target structures. Each number 
was generated from the averages of left seed structure to left target struc-
ture and right seed structure to right target structure. The numbers were 
then divided by total fibers generated from a seed structure and other 
target structures, then represented in percentages. Both target and seed 
structures are GPe, globus pallidus external; GPi, globus pallidus internal; 
STN, subthalamic nucleus; SNr, substantia nigra reticular; SNc, substantia 
nigra compact; CP, caudoputamen. 

Fig. 5. Visual representation of 
Table 2. The thickness of lines 
connecting each structure, cau-
doputamen (CP), globus pallidus 
external (GPe), globus pallidus 
internal (GPi), substantia nigra 
compact (SNc), substantia nigra 
reticular (SNr), subthalamic 
nucleus (STN), represent relative 
levels of diffusion connectivity.
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generated between seed structure B and target structure A. As a 
result, we quantified probabilistic tractography using left hemi-
sphere structures as seeds and targets, right hemisphere structures 
as seeds and targets, then left hemisphere structures as seeds with 
right hemisphere structures as targets and vice versa. The result-
ing fibers were visualized as a 3D volumetric object. Using the 
data from probabilistic tractography, we generated a connectivity 
matrix representing the relative connectivity between the left and 
right seed structures and left and right target structures (Fig. 6). 

To compare the results of our methodology with neuronal tracer 
data, we ran the DTI tractography pipeline using the 3D injection 
data of neuronal tracer as the seed structure. The injection struc-
ture (shown in blue in Fig. 7) was transformed into our native data 

space, then the results of our DTI tractography (shown in red in 
Fig. 7) was transformed into Allen Brain Atlas template space for 
direct comparison with projection data (shown in green in Fig.  
7). Globus pallidus external (GPe) injection structure, projection 
structure and DTI tractography generated from GPe injection 
structure are overlaid on top of Allen Brain Atlas template in Fig. 7. 

DISCUSSION

There has been a growing trend of studies that show significant 
changes in diffusion tractography in diseased individuals as well as 
in patients that have undergone treatment. Diffusion tractography 
utilizes diffusion tensor images to reconstruct white matter fiber 

Fig. 6. Probabilistic tractography connectivity matrix of waypoint connectivity between left and right basal ganglia structures, displayed with a log10 
scale on the right. The seeds (top column) and targets (left row) are indicated by their name and colored 3D rendering. The diagonal elements of the ma-
trix represent total number of fibers generated from each seed.
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bundles and pathways between brain structures. Various studies 
have used this tool to observe changes in white matter fibers of 
patients with Parkinson’s disease [30] and Alzheimer’s disease [6]. 
Additionally, there were studies that utilized diffusion tractogra-
phy to observe increase in connectivity due to deep brain stimula-
tion in Parkinson’s patients [31]. As such, it is likely that diffusion 
tractography can be used to identify significant effects of pre-
clinical treatment in animal models. While the use of probabilistic 
tractography has yet to be thoroughly explored in mice models, 
the ability to observe significant changes in the mouse brain with-
out the need for invasive procedures should prove to be beneficial 
in improving the consistency of results. 

In this study, we constructed probabilistic tractography between 
basal ganglia structures of a mouse. The relative levels of con-
nectivity were often highest between structures that were closest 
to each other. Similarly to the Plantinga study [19], which used 
diffusion tractography to measure relative connectivity between 
the human basal ganglia, GPi was most strongly connected with 
GPe and SNc was most strongly connected with SNr (Fig. 3 and 
5). There were couple of differences however, with Plantinga study 
reporting almost identical connectivity between STN, SNr and 
STN, SNc, while our results showed stronger connections between 
STN and SNr than STN and SNc. It is possible that the differences 
in results are due to anatomical differences (regarding size and 
distance) between human brain structures and mouse brain struc-
tures [32]. 

There are benefits to exploring the structural connectivity 
between basal ganglia structures. The basal ganglia consist of 
interconnected subcortical structures responsible for mediating 

various motor and limbic functions. In diseases like Alzheimer’s 
and Parkinson’s, there are associated problems that arise in the 
basal ganglia, particularly in the disrupted flow of neurotransmit-
ters between basal ganglia structures. Patients with Alzheimer’s 
have shown depletion in choline acetyltransferase (precursor to 
acetylcholine) and dopamine [33], which are neurotransmitters 
responsible for motor control and reward systems [34, 35]. In pa-
tients with Parkinson’s disease, it is widely accepted that dopamine 
producing cells are severely depleted (particularly in the substantia 
nigra), which disrupts the function of associative and sensorimo-
tor striatum [36]. Using Parkinson’s mouse models, which are 
produced by disrupting the dopaminergic pathway with toxins 
such as MPTP [4] or 6-OHDA [37], various studies showed is-
sues within the basal ganglia. One study using Parkinson’s mouse 
model showed beta oscillations in the cortico-basal ganglia loop, 
whose reduction seemed to correlate with alleviation of Parkin-
son’s motor symptoms [38, 39]. Other studies revealed alteration 
of glutamatergic neurotransmissions in the striatum and subtha-
lamic nucleus of Parkinson’s models [40]. Using Alzheimer’s mouse 
models, studies were able to visualize the pathology of Alzheimer’s 
disease in the basal ganglia [41] as well as demonstrate potential 
treatment in reducing Alzheimer’s biomarkers which are usually 
found in the basal ganglia [42].With numerous studies placing 
heavy emphasis on the basal ganglia regarding neurodegenerative 
diseases like Parkinson’s and Alzheimer’s, we believe our results 
and methodology should aid future experiments in identifying 
significant effects of pre-clinical treatments on neurodegenerative 
diseases. 

While probabilistic diffusion tractography provides avenues for 

Fig. 7. Comparison between diffusion tractography and neuronal tracer projection. The neuronal injection site regions of interest (colored in light blue) 
were first registered to our native mouse brain diffusion image then used to generated diffusion tractography. Then the diffusion tractography fibers 
(colored in red-orange) generated from the injection ROI were registered back to ABA mouse template (obtained using ABA software development kit 
http://alleninstitute.github.io/AllenSDK/connectivity.html) and was compared with neuronal tracer projection data (colored in green). All injection, 
projection and diffusion tractography data were overlaid on top of ABA mouse template. (A) Sagittal view of the injection, projection, diffusion tractog-
raphy, ABA template overlay. (B) Coronal view of the injection, projection, diffusion tractography, ABA template overlay. 
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comparing structural connections between basal ganglia struc-
tures, results still remain questionable due to various factors such 
as lack of prior studies on probabilistic tractography between 
basal ganglia of the mouse, as well as imperfect data acquisition 
(which could lead to noise and artifacts interfering with connec-
tome generation) [43]. Therefore, our generated tractography were 
directly compared with neuronal tracer data obtained from Allen 
Brain Atlas to test for the accuracy of using probabilistic diffusion 
tractography for mapping structural connectivity between basal 
ganglia structures (Fig. 7). However, similar to the Calabrese study 
[18], structural tractography generated using diffusion probabi-
listic tractography did not correspond well with neuronal tracer 
projection data. In Fig. 7, comparisons between DTI tractography 
and neural tracer projection shows differing travel directions, with 
DTI tractography expanding upwards while projection expands 
sideways. The Calabrese study also states that this is possibly due 
to the difference in nature of neuronal tracers, which travels uni-
directional through individual axons, and diffusion tractography, 
which are generated multidirectionally (from fiber orientations) 
through multiple axons and in between synapses. 

There are some limitations to consider for this study. First, only a 
single mouse was utilized for this study, limiting potential tests for 
validation and variability. We were unable to conduct tests to cor-
rect for individual variations of the mouse brain, which could have 
a significant effect on the segmentation of brain structures, as well 
as tractography generated between structures. Second, a postmor-
tem mouse brain was utilized for this study. While perfusion fixing 
postmortem mouse brain can enhance the clarity of MRI images 
acquired [44], it is possible that the results can significantly differ 
when using a live, in vivo mouse. Additionally, there has been stud-
ies reporting that the elapsed time between death and perfusion 
fixation can adversely affect diffusion properties of mouse brain 
[45]. As such, it is possible that the results of our ex vivo segmenta-
tion and tractography can vary when compared with the results of 
in vivo mouse brain segmentation and tractography. 

Diffusion tractography between the structures of the basal gan-
glia has yet to be studied using a mouse model. The present study 
quantified and visualized probabilistic tractography between basal 
ganglia structures of the mouse. With growing importance in us-
ing diffusion tractography to measure connectivity levels of the 
basal ganglia in patients with neurodiseases such as Parkinson’s 
and Alzheimer’s, we believe that our data will be useful in identify-
ing alterations of the levels of connectivity in other mouse models, 
possibly with neurodiseases modelling Parkinson’s and Alzheim-
er’s. With additional studies on the use of diffusion tractography 
on mice and variety of disease mouse models, we believe that dif-
fusion tractography can be an important avenue for studying the 

changes of structural connectivity that arises from neurodegenera-
tive diseases. 
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