
INTRODUCTION

Parkinson’s disease (PD) is the second most prevalent 
neurodegenerative disease, with clinical characteristics of resting 
tremor, muscle tone rigidity, bradykinesia, and postural instability 
[1]. However, patients with PD also suffer from wide-range of 

non-motor symptoms, including psychiatric, autonomic, sensory, 
and sleep abnormalities [2]. These symptoms become diverse 
and severe as the disease progresses, indicating broad spectrum 
pathology in the central nervous system as well as the peripheral 
nervous system [3-6]. Pathologically, PD is characterized by 
the loss of specific neurons, such as dopaminergic neurons 
in the substantia nigra pars compacta, and the occurrence of 
proteinacious inclusion bodies known as Lewy bodies and Lewy 
neurites [7]. These inclusion bodies are composed of numerous 
proteins and vesicles, among which amyloid fibril aggregates of a 
neuronal protein α-synuclein are the major constituents [8].

Progress in PD research has been driven by human genetic 
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Parkinson’s disease is a multifactorial disorder with several genes linked to the familial types of the disease. ATP13A2 is one of those 
genes and encode for a transmembrane protein localized in lysosomes and late endosomes. Previous studies suggested the roles of 
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in ATP13A2-/- compared to the normal cells. Therefore, the proposed roles of ATP13A2 in lysosomal functions may not be 
generalized and may depend on the cellular context. The ATP13A2-/- cells generated in the current study may provide a useful 
control for studies on the roles of PD genes in lysosomal functions.
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studies that identified about 20 genes that are associated with PD 
[9,10]. Among these genes, SNCA, which encodes α-synuclein, has 
been not only linked to several inherited forms of PD [11] but also 
identified as the most consistent and strongest genetic risk factor 
for sporadic PD from genome-wide association studies [12]. 

Mutations in ATP13A2 have been linked to different diseases 
including Kufor-Rakeb syndrome, PD, and Neuronal Ceroid 
Lipofuscinosis (NCL) [13-25]. ATP13A2 protein is localized in 
lysosomes and late endosomes [13] and belongs to the P-type 
ATPase pump. Consistent with the localization and the structural 
features, the normal function of ATP13A2 has been suggested in 
mitophagy [26-28], autophagic protein degradation [29-31], and 
metal/cation homeostasis [28,31-41]. 

ATP13A2 knockout mice display neuropathological phenotypes 
that resemble those of NCL and PD, such as hippocampal 
accumulation of α-synuclein and lipofuscinosis [29]. Systems 
biology analysis suggested that ATP13A2 and α-synuclein were 
integral components in the common interaction network [35]. 

Several genes linked to PD have been suggested to function in the 
lysosomal degradation pathway and in formation of α-synuclein 
pathology [42-44]. Here, we generated a human neuroblastoma 
cell line lacking ATP13A2 and investigated the role of this protein 
in the general lysosomal function and in α-synuclein metabolism.

MATERIALS AND METHODS

Materials

The following antibodies were used in this study: ATP13A2 
polyclonal antibody (Abcam, ab135674, Cambridge, MA; 1:1,000), 
β-actin monoclonal antibody AC-15 (Sigma-Aldrich, A5441, St. 
Louis, MO; 1:10,000), p62 monoclonal antibody (BD Transduction 
Laboratories, c2384-0B, Swampscott, MA; 1:1,000), ubiquitin 
polyclonal antibodies (Dako, #z0458, Glostrup, Denmark, and 
Chemicon, Temecula, CA; 1:1,000), α-synuclein monoclonal 
antibody (BD Biosciences, #610787, San Diego, CA; 1:1,500), 
α-synuclein monoclonal antibody Ab274 (1:1,500), α-synuclein 
monoclonal antibody Ab62 (1:1,000), HRP-conjugated goat anti-
mouse IgG (H+L) (Bio-Rad Laboratories, 172-1011, Hercules, CA; 
1:3,000), and HRP-conjugated goat anti-rabbit IgG (H+L) (Bio-
Rad Laboratories; 1:3,000).

Fluorescein-conjugated dextran (10,000 molecular weight; 
D-1821), TO-PRO-3 iodide (T3605), and LysoTracker Red DND-
99 (L-7528) were purchased from Invitrogen (Carlsbad, CA).

Generation of ATP13A2 knockout cell lines

SH-SY5Y cells (ATCC, CRL-2266, Manassas, VA) were 
transfected with plasmids encoding zinc-finger nuclease 

and a magnetic reporter (ToolGen, Seoul, Korea) by using 
electroporation. After incubation for 48 h, cells were trypsinized 
and mixed with magnetic bead-conjugated antibody against H-2Kk 
(MACSelect Kk microbeads, Miltenyi Biotech, Germany). The 
mixture was applied to a MACS LS column (Miltenyi Biotech). 
A single cell isolated from eluates was maintained until the clonal 
colony was picked from the culture dish. Nonsense mutations in 
the ATP13A2 gene were confirmed by DNA sequencing.

Cell culture

SH-SY5Y human neuroblastoma cell lines were subcultured 
as described previously [43]. Cells were maintained every 2 days 
at 37°C in humidified air with 5% CO2 in Dulbecco’s modified 
eagle’s medium (DMEM) (HyClone, SH30243.01, Logan, UT) 
containing 10% fetal bovine serum (HyClone, SH30396.03), 100 
units/mL penicillin, and 100 units/mL streptomycin (Gibco, 
15140-122, Grand Island, NY). To differentiate SH-SY5Y cells, cells 
were maintained in the presence of 50 μM all-trans-retinoic acid 
(Sigma-Aldrich, R2625) for 7 days. For overexpression of human 
α-synuclein, differentiated SH-SY5Y cells were infected with a 
recombinant adenoviral vector (serotype Ad5, CMV promoter) 
containing human α-synuclein cDNA at a multiplicity of infection 
of 33.3.

Preparation of cell extracts

After washing with ice-cold phosphate-buffered saline (PBS) 
twice, cells were lysed in extraction buffer (1% Triton X-100 and 1% 
(v/v) protease inhibitor cocktail (Sigma) in PBS). Cell lysates were 
incubated on ice for 10 min and centrifuged at 16,000 × g for 10 
min. The Triton X-100 insoluble fraction was resuspended in 1× 
Laemmli sample buffer and sonicated briefly.

Western blotting

Western blotting was performed as previously described [43]. 
Images were obtained and quantified using a Luminescent Image 
Analyzer (LAS-3000) and MultiGauge version 3.0 software 
(Fujifilm, Tokyo, Japan).

Characterization of lysosomal dysfunction

To analyze the accumulation of acidic compartments, SH-SY5Y 
cells were incubated with 75 nM LysoTracker solution diluted 
in growth medium. After incubation for 1 h at 37°C in a CO2 
incubator, cells were washed with ice-cold PBS and fixed in a 4% 
paraformaldehyde (PFA) solution. To analyze the degradation 
ratio of internalized dextran, cells were incubated with 20 μg/mL 
of fluorescein isothiocyanate (FITC)-labeled dextran (Invitrogen) 
for 2 h. After washing with DMEM, cells were incubated with fresh 
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growth medium for 30 min and fixed with a 4% PFA solution. 
The fluorescence intensity was measured using Olympus FV1000 
software. The extent of degradation of internalized dextran–FITC 
was calculated using the equation (Ftime0−Ftime30)/Ftime0, where Ftime0 
and Ftime30 are the integrated fluorescence intensities at 0 and 30 
min, respectively.

Enzyme-linked immunosorbent assay (ELISA)

ELISA was performed as previously described [45]. 96-well 
ELISA plates (Nalgene Nunc International, Rochester, NY) 
were coated with 1 mg/mL capture antibody (Ab62) in 50 mM 
carbonate buffer (pH 9.6) at 4°C overnight. After washing with 
PBS with 0.05% Tween 20 (PBST), the plate was incubated with 
SuperBlock T20 (PBS) Blocking Buffer (Thermo Scientific, 
Rockford, IL) at room temperature (RT) with shaking for 1 h, 
and washed five times in PBST. Samples and standards were 
incubated at RT for 2.5 h with shaking. After washing with PBST, 
1 μg/mL biotinylated Ab62 in blocking buffer was added to each 
well. After 1.5 h incubation at RT with shaking, the plates were 
washed with PBST. Avidin-conjugated peroxidase (ExtrAvidin, 
Sigma) was incubated for 1 h at RT. After washing with PBST, 100 
μL of 3,3',5,5'-tetramethylbenzidine solution (Sigma) was added 
to each well and plate was incubated for 15 min with shaking. To 
stop the reaction, 50 μL of 2N H2SO4 was added to each well. The 
absorbance was measured at 450 nm.

Statistical analysis

Values shown in the figures are means±S.E.M. To analyze the 
statistical significance, p values were calculated by means of paired, 
two-tailed Student’s t tests by using InStat version 3.05 software 
(GraphPad Software, San Diego, CA).

RESULTS 

To generate a human neuronal cell line deficient in ATP13A2 
gene, we designed zinc finger nuclease (ZFN) constructs targeting 
the exon 2 of  the gene (Fig. 1A), and SH-SY5Y cells were 
transfected with the ZFN vectors. Transfected cells were screened 
for nonsense mutations in the targeted gene as described in the 
Materials and Methods. We selected a cell line with nonsense 
mutations in both copies of ATP13A2 gene (ATP13A2-/-, Fig. 
1A). Gene deficiency was confirmed by western blotting showing 
the lack of protein expression (Fig. 1B). 

To examine the role of ATP13A2 in lysosomal functions, 
we performed the following analyses. First, we measured the 
steady state levels of lysosomal substrate proteins, p62 and 
polyubiquitinated proteins. The levels of these proteins were not 

altered significantly in the knockout cells (Fig. 2A, B). Second, 
we measured the amounts of cytoplasmic acidic compartments 
using lysotracker, a protonophilic fluorescent dye. It has been 
shown that production of acidic compartments were elevated 
in cells with lysosomal dysfunction, perhaps as a compensatory 
mechanism [43]. ATP13A2-/- cells contained the similar amounts 
of lysotracker-positive compartments as the control cells (Fig. 
2C). Finally, we measured the rates of dextran degradation. 
Fluorescence-labeled dextran was fed to cells, and the fluorescence 
decay rates reflect lysosomal degradation activities. The normal 
cells and ATP13A2-/- cells showed similar rates of dextran 
degradation (Fig. 2D). These results, collectively, suggest that in 
SH-SY5Y neuroblastoma cells, ATP13A2 is not necessary for the 
normal lysosomal functions.

Previous studies suggested that ATP13A2 and α-synuclein exert 
their pathogenic actions in the same pathway [35]. Lysosomal 
functions were postulated to play a role in the cooperation 
between these two proteins in PD pathogenesis. To examine the 
functional link between these proteins, we measured the steady 

Fig. 1. Generation of ATP13A2 deficient cell line by using zinc-finger 
nucleases. (A) To generate nonsense mutations in two alleles of the 
ATP13A2 gene, SH-SY5Y human neuroblastoma cells were transfected 
with zinc-finger nucleases (ZFNs) targeting exon 2. After clonal selection, 
the nonsense mutations in ATP13A2 exon were confirmed by DNA 
sequencing. (B) Western blot analysis of ATPase 13A2 in cell lysates. 
ATPase 13A2 protein was completely depleted in ATP13A2 -/- cell lines.
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state levels of α-synuclein in the control and ATP13A2-/- cells. 
The levels of α-synuclein in both Triton-soluble and Triton-
insoluble fractions were not altered in ATP13A2 deficient cells 
(Fig. 3). We also measured the levels of secreted, extracellular 
α-synuclein, which might be a key player in progression of PD [46]. 
ELISA showed that the levels of secreted α-synuclein in the culture 
media were not changed in ATP13A2-/- cells compared with the 
control cells (Fig. 4).

DISCUSSION

A large number of previous studies suggested that ATP13A2 
deficiency caused lysosomal dysfunction and α-synuclein 

accumulation in both in vitro and in vivo models [29,30,33,34]. 
The relationship between ATP13A2 and α-synuclein seems to be 
conserved throughout the evolutionary stages from yeast through 
nematode to mammals [35]. The lack of effect of ATP13A2 
deficiency on lysosomal functions and α-synuclein metabolism 
presented in the current study is therefore unexpected and could 
be interpreted in various ways. One possibility is that ATP13A2 

Fig. 3. α-synuclein did not accumulate in ATP13A2 deficient SH-SY5Y 
cells. (A-C) Westernblot analysis of α-synuclein. Human α-synuclein was 
overexpressed both in the WT and ATP13A2 -/- SH-SY5Y cells. On day 
3 after infection, the levels of α-synuclein was measured in triton X-100 
soluble (B) and insoluble fraction (C). ATP13A2 depletion in SH-SY5Y 
cell did not change the level of α-synuclein. n=3.

Fig. 2. ATP13A2 depletion in SH-SY5Y cell line did not alter the lysosomal 
function. (A, B) The accumulation of p62 (A) and polyubiquitinated 
proteins (B) were analyzed in triton X-100 in soluble fraction. For 
quantification of polyubiquitinated proteins, the quantified size range 
is indicated by the line to the right of the blot. The ATP13A2 deficiency 
did not result in the accumulation of p62 and poly ubiquitinated proteins 
in SH-SY5Y cells. n=5. (C) The level of acidic cell ular compartment was 
measured by using LysoTracker. The number of Lyso Tracker-positive 
compartments did not increase in ATP13A2 deficient SH-SY5Y cell. n=5, 
Scale bars: 20 μm. (D) To test lysosomal degradation rate, degradation rate 
of internalized dextran–fluorescein isothiocyanate (FITC) was analyzed. 
ATP13A2 deficient SH-SY5Y cells did not show the decrease in the 
degradation rate. n=3, Scale bars: 20 μm.

Fig. 4. ATP13A2 depletion did not increase the secretion of α-synuclein 
aggregates. (A) To test the alteration of α-synuclein aggregate secretion, 
α-synuclein conditioned media was obtained from α-synuclein 
overexpressing WT and ATP13A2 -/- SH-SY5Y cells. On day 2 after 
infection with adenovirus, cells were incubated with serum free media for 
18 h, after washing with DMEM three times. After incubation for 18 h at 
37°C, the media was collected from cells. The level of secreted α-synuclein 
aggregates was analyzed by using α-synuclein aggregate specific ELISA. 
The level of secreted α-synuclein aggregates was not altered in ATP13A2 
deficient SH-SY5Y cells. n=4. The level of α-synuclein aggregates was 
normalized with the level of secretogranin II (SGII) in culture media (B).
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is not critical for lysosomal functions at least in SH-SY5Y 
neuroblastoma cells. This does not exclude the possibility that 
ATP13A2 may play critical functions in lysosomes in different 
cell types. Another possibility is that the function of ATP13A2 
is redundant. ATP13A2 is a member of P5-type ATPase pump 
(ATP13A1-5). Although functions of these family members 
have not been determined, it is possible that at least some of the 
functions are redundant. Therefore, expression of other P5-type 
ATPases may compensate for the lack of ATP13A2. A recent study 
concluded that lowering the levels of ATP13A2 did not alter Mn+ 
sensitivity in SH-SY5Y cells [33]. 

Although many previous studies showed the role of ATP13A2 
in lysosomal functions and metal homeostasis, our study suggests 
that functional manifestation of ATP13A2 deficiency varies 
depending on the cell types. SH-SY5Y cells are commonly used 
in the field of neurological diseases, particularly frequently 
among PD researchers for their catecholaminergic phenotypes. 
Based on the results of the current study, we conclude that SH-
SY5Y cells are not a suitable model system to study the loss-of-
function effects of ATP13A2 on lysosomal functions, however, 
can be useful as a negative control to study lysosomal dysfunction 
caused by genetic modifications. We do not exclude the possibility 
that SH-SY5Y/ATP13A2-/- cells have phenotypes that are not 
related to lysosomal functions, such as ion homeostasis. Further 
characterization of the cells should clarify the issue.
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