
INTRODUCTION

Tight connections between presynaptic bouton and postsynaptic 
density by cell adhesion molecules (CAMs) are critical to form 
stable and functional synapses [1-6]. Two types of CAMs, Ca2+-
dependent and Ca2+-independent, work as synaptic adhesion 
molecules in the central nervous system (CNS). Cadherin and 
selectin are dependent on Ca2+ ion for binding, while members of 
the immunoglobulin superfamily (IgSF) contribute to establish-
ment and remodeling of neuronal synapses [7-9] in a Ca2+-inde-
pendent manner. Among IgSF, immunoglobulin LON (IgLON) 
family proteins function as synaptic adhesion molecules that play 

important roles in axonal extension, dendritic arborization, and 
synaptogenesis during brain development [10-13]. Molecules 
of the IgLON family including LAMP, OBCAM, neurotrimin, 
GP55, and AvGP50 have three Ig-like domains and localize to the 
membrane raft of the Triton-insoluble low-density fraction via a 
glycosylphosphatidylinositol (GPI)-anchor [14-18]. Among the 
IgLONs, neuronal growth regulator 1 (Negr1), also named Kilon 
(a kindred of IgLON), is the most recently characterized IgLON 
subgroup member [19, 20]. 

Negr1 is a GPI-anchored membrane protein of 46 kDa with 
three immunoglobulin-like domains and six putative glycosyl-
ation sites (Fig. 1A) [19, 20]. Initial studies during mouse develop-
ment show that Negr1 expression gradually increases during post-
natal brain development and reaches a constant level in adulthood 
[20-22]. Both immunohistochemistry and western blot analysis 
confirm that the Negr1 protein is expressed in the cerebral cortex 
and hippocampus of the adult rat [19]. In situ hybridization stud-
ies revealed that Negr1 mRNA is expressed in the cerebral cortex, 
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hippocampus, amygdala, hypothalamus, and olfactory bulb [23]. 
Moreover, electron microscopic analysis showed specific localiza-
tion of Negr1 at postsynaptic regions of dendritic synapses in the 
cerebral cortex and hippocampus of the adult brain [22]. In an-
other study, Negr1 expression was detected in reactive astrocytes, 
which contribute to neurite outgrowth of hippocampal neurons 
[21]. These data suggest that Negr1 has distinct functions depend-
ing on its cellular and subcellular localization in the brain.

ROLE OF NEGR1 IN NEURONAL SYNAPTOGENESIS AND NEU-
RITE OUTGROWTH

The role of Negr1 in synaptogenesis and neurite outgrowth has 
been reported mainly in in vitro studies. Comparing cultured cor-
tical neurons from wild type and Negr1 knockout (negr1 -/-) mice, 
negr1 -/- cortical neurons showed significantly reduced neurite 
numbers, length, and branches [23]. It was suggested that Negr1 is 
shed from the cortical neuronal membrane by metalloproteinase 
ADAM10 [10], and the soluble form of Negr1 can promote syn-
aptogenesis and neurite outgrowth [24]. Pischedda and Piccoli 
[24] showed that membrane-released soluble Negr1 promoted 

neurite outgrowth by modulating ERK1/2 activation and the 
fibroblast growth factor receptor 2 (FGFR2) signaling pathway 
as an underlying mechanism. In cultured hippocampal neurons, 
Negr1 was detected mainly in the presynaptic axon terminals in 
the early culture stage (DIV 3-14); however, at late culture stage 
(DIV21-28), it was detected mainly in the dendritic postsynaptic 
spine of mature neurons [25]. This suggests that Negr1 expression 
and subcellular localization are differentially regulated depend-
ing on developmental stage of hippocampal neurons. Moreover, 
heterologous overexpression of negr1  in hippocampal neurons 
decreased dendritic synapse number  at early culture stages (DIV 
3-14), whereas it increased dendritic synapses in late culture stages 
(DIV 21-28) [25]. Together, these studies argue that Negr1 differ-
entially modulates neural outgrowth depending on developmental 
stage [25]. The morphology of neuronal dendritic processes is also 
affected by Negr1 expression [26]. When Negr1 expression was 
knocked-down by miRNA in cultured cortical neurons at DIV 1, 
it altered the distribution of neurites in each branching order at a 
late culture stage (DIV 16) but not at an early culture stage (DIV 6) 
[26]. Taken together, these results indicate that Negr1 is an impor-
tant regulator of not only synapse number, but also of maturation 

Fig. 1. (A) Structure of Negr1. Loops represent immunoglobulin-like domains. Lines ending with dots are putative N-linked glycosylation sites. (B) 
Schematic illustration of the molecular mechanism underlying the regulatory role of Negr1 in anxiety- and depressive-like behaviors. Negr1 interacts 
with LIF receptor and potentiates Lcn2 expression. Lcn2, in turn, induces hippocampal neurogenesis in adult mice. In negr1 -/- mice, impaired adult hip-
pocampal neurogenesis due to reduced Lcn2 expression results in anxiety- and depression-like behaviors.
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of dendritic processes; moreover, its regulatory effects are depen-
dent on the developing stages of neurons. Direct control by Negr1 
of synapse number and neurite outgrowth was also demonstrated 
in an in utero  study [27]. When negr1  expression was silenced 
in mouse embryonic brain at E15.5 by in utero  electroporation, 
dendritic length and number of neurite processes of layer II/III 
cortical neurons at P7 decreased significantly compared with their 
controls [27]. These results confirm that Negr1 deficiency prevents 
normal morphological development of pyramidal neurons in vivo. 

ROLE OF NEGR1 IN OBESITY

Since the cloning of negr1, the function of this putative synaptic 
adhesion molecule has been investigated mainly in synaptogenesis 
and neurite outgrowth. Therefore, it was unexpected when human 
genetics studies showed Negr1 as a major risk factor for human 
obesity by genome-wide association studies (GWAS) [28-31]. 
These studies have been replicated in human subjects of various 
ethnic groups including Europeans [32-37], Asians [38-40], and 
African Americans [41, 42], suggesting that common genetic vari-
ants of negr1  increase the risk of obesity in diverse ethnic back-
grounds. Moreover, one animal study demonstrated that increased 
fat mass, enlarged adipose cells, and decreased muscle mass were 
observed in negr1-deficient mice [43], suggesting that Negr1 may 
serve as a potential drug target that could be exploited for treat-
ment of human obesity. However, there also were some studies 
that failed to pinpoint Negr1 as an obesity-associated risk factor 
[44-46]. An obesity risk locus that was identified in obese adults 
was not related to weight gain of overweight children [44]. More-
over, SNPs of negr1 identified in a European population were not 
related to and had no significant effects in a Chinese population 
[45, 46]. Thus, although most reports indicate Negr1 as an obesity 
risk factor, further precise investigation is still needed.

Currently, the molecular mechanisms regarding how Negr1 
serve as a risk factor for human obesity are not clear. Although an 
in vitro study showed a putative role of Negr1 in lipid metabolism 
[43], studies using animal models failed to show any mechanism 
but rather showed conflicting data. For example, one study showed 
significantly reduced body mass, food intake, and physical activity 
in negr1 -/- mice while energy expenditure remained unchanged 
[47]. In contrast, another study that targeted Negr1 expression in 
a specific brain region showed an opposite phenotype; blocking 
Negr1 expression in the periventricular hypothalamus area in vivo 
led to increase in body weight and food intake and reduced loco-
motion activity [48]. Therefore, it can be speculated that Negr1 
expression in the hypothalamus may play a different role in body 
mass increase compared with that in other brain/body regions. 

Therefore, the brain region-specific effects of Negr1 polymor-
phisms on the pathogenesis of obesity need to be addressed. 

ROLE OF NEGR1 IN MAJOR DEPRESSIVE DISORDER (MDD)

Dennis et al. [49] recently reported that Negr1 has effects on 
brain structure independent of its effects on obesity. By comparing 
white matter integrity and SNPs of Negr1 in healthy young adults, 
they concluded that negr1 was closely associated with low white 
matter integrity. Considering that precise temporal and spatial 
expression of CAMs is crucial for development, construction, 
and maintenance of functional neural connectivity [5, 50, 51], it 
is anticipated that Negr1 may impact the pathogenesis of brain 
disorders in addition to obesity [52-54], and recent studies suggest 
that Negr1 is implicated in major depressive disorder (MDD).

Maccarrone et. al. [55] screened for a disease-specific protein 
bio-signature in the cerebrospinal fluid (CSF) of MDD patients 
and found a significant elevation of Negr1 in these patients com-
pared to healthy individuals. The involvement of Negr1 in MDD 
was also supported by a study screening for putative genetic traits 
associated with treatment response of selective serotonin reuptake 
inhibitors (SSRIs) [56] in MDD patients. In this recent cross-trait 
meta-analysis study, negr1  was uncovered as a key genetic locus 
associated with SSRI responsiveness in MDD patients and was 
implicated in both obesity and SSRI treatment response [56]. This 
implies that the genetic variant of obesity is closely linked to SSRI 
treatment efficacy in MDD. In line with this, aberrant expression 
of synaptic adhesion molecules was proposed as an etiologic factor 
of depressive disorder [57, 58], and a strong association between 
SNPs of the limbic system-associated membrane protein (LSAMP) 
gene and human MDD has been reported [59]. These prior stud-
ies suggest that negr1 may also be involved in psychiatric disorders 
such as MDD.

To understand the relationship between Negr1 and psychiatric 
disorders, we used negr1 -/- mice to test whether Negr1 influences 
affective behaviors such as anxiety and depression [60]. We found 
that negr1 -/- mice exhibit anxiety- and depressive-like behaviors 
caused by impairment of synaptic transmission of granule cells and 
neurogenesis in the hippocampal dentate gyrus (DG) [60]. Interest-
ingly, we found that expression of Lipocalin-2 (Lcn2), a 24-kD se-
cretory cytokine [61, 62], is severely compromised in negr1 -/- mice, 
and this Lcn2-decrease is responsible for the cellular and behavioral 
abnormalities observed in negr1 -/- mice [60]. Specifically, heterolo-
gous Lcn2 expression in the DG region of negr1 -/- mice rescued the 
abnormal electrophysiological properties of granule cells, impaired 
hippocampal neurogenesis, and anxiety- and depressive-like be-
haviors in negr1 -/- mice [60]. Therefore, our data indicate that the 
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abnormal affective behaviors observed in negr1 -/- mice are due to 
lack of expression of Lcn2, an immune mediator. In our effort to 
elucidate the molecular mechanisms underlying the functions of 
Negr1, we discovered that Negr1 directly interacts with leukemia 
inhibitory factor receptor (LIFR), a co-receptor for LIF [63-65], and 
thereby potentiates Lcn2 expression [60]. Taken together, our data 
suggest that Negr1 potentiates LIFR-induced Lcn2 expression and 
thereby affects hippocampal neurogenesis and affective behaviors 
(Fig. 1B). In previous reports, reduced hippocampal neurogenesis 
was observed in Lcn2-deficient mice [66], and these mice showed 
both anxiety and depressive behaviors [61, 62], which is in line with 
our findings. Thus far, both cytokines and synaptic adhesion mole-
cules have been shown to play pivotal roles in MDD and anxiety [67, 
68]; however, the cross-talk between these two depression/anxiety-
mediating pathways has not been reported. Consequently, Negr1’s 
function via  regulation of the expression of immune mediators is 
unique compared to other synaptic adhesion molecule functions.

INVOLVEMENT OF NEGR1 IN OTHER PSYCHIATRIC DISOR-
DERS AND COGNITIVE FUNCTIONS

In addition to MDD, Negr1 has been implicated in other psychi-
atric disorders and neurological diseases. Several studies have pro-
vided evidence that Negr1 is involved in Alzheimer disease (AD) 

[69, 70], autism spectrum disorder (ASD) [27], and schizophrenia 
(SCZ) [71]. A GWAS study using patients with comorbid MDD 
and AD identified negr1 as a genetic risk factor that affects AD de-
velopment [70]. These results suggest a possibility that negr1 serves 
as a common risk factor for both MDD and AD pathologies. 
Furthermore, downregulation of Negr1 in mice resulted in im-
paired behaviors that are similar to those of individuals with ASD 
[27]. In that study, the authors proposed a putative mechanism by 
which Negr1-deficiency leads to ASD behavior. According to their 
proposed mechanism, Negr1 directly interacts with FGFR2 and 
cooperatively regulates cortical development. Thus, Negr1-defi-
ciency led to impaired cortical development resulting in the ASD 
phenotype. Moreover, a clinical study with schizophrenic patients 
showed increased expression levels of Negr1 transcript in the dor-
solateral prefrontal cortex of these patients [71]. Taken together, 
these studies strongly support that the altered expression of Negr1 
may be associated with abnormal behaviors of various psychiatric 
disorders (Table 1). 

To address the breadth of Negr1 influence in psychiatric disor-
ders, we subjected our negr1 -/- mice to a series of cognitive tasks 
assessing spatial memory, recognition memory, and context fear 
memory. In the spatial version task of Morris water maze for mea-
suring spatial memory, our negr1 -/- mice performed worse than 
wild-type mice in locating the hidden platform (Fig. 2A) while 

Table 1.Studies showing putative involvement of Negr1 in psychiatric disorders

Literature Disease targeted Subject Main findings

Singh et al. 2019 [23] General psychiatric disorders negr1 -/- mouse - Enlarged ventricle.
- Decreased number of parvalbumin-positive inhibitory 

interneurons in hippocampus.
- Hyperactivity in social interaction.
- Impaired social dominance behavior.

Maccarrone et al. 2013 [55] Major depressive disorder (MDD), 
Bipolar disorder,  
Schizophrenia (SCZ)

Human - Identification of association of Negr1 as a MDD-specific 
protein biosignature in cerebrospinal fluid of MDD pa-
tient.

Szczurkowska et al. 2018 [27] Autism spectrum disorder (ASD) negr1 -/- mouse - Impaired ultrasonic vocalization.
- Increased latency to respond to thermal stimuli.
- Less sniffing, More grooming.

Ni et al. 2018 [70] Major depressive disorder (MDD), 
Alzheimer’s disease (AD)

Human, mouse - Identification of Negr1 as a common variants in the MDD 
GWAS loci with AD.

- Reduced mRNA expression in the entorhinal cortex and 
temporal cortex in human AD patient.

- Significant correlation of Negr1 mRNA expression level 
with both amyloid-β (Aβ) and tau (Tau) burden in AD 
mouse model.

Karis et al. 2018 [71] Schizophrenia (SCZ) Human - Increased Negr1 transcript level in dorsolateral prefrontal 
cortex in SCZ patient.

Noh et al. 2019 [60] Major depressive disorder (MDD) negr1 -/- mouse - Increased anxiety- and depressive-like behavior.
- Decreased hippocampal neurogenesis.
- Reduced Lipocalin-2 (Lcn2) expression in hippocampus.
- Impaired LTP and mEPSC in hippocampal dentate gyrus.

Amare et al. 2018 [56] Major depressive disorder (MDD) Human - Identification of association of Negr1 in SSRI treatment 
response.
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exhibiting no differences in the swimming speed (Fig. 2B). On the 
probe trial, the negr1 -/- mice swam much farther from the hidden 
platform location than the wild-type mice, as measured by prox-
imity (Fig. 2C). These results indicate hippocampal dysfunction 
of negr1 -/- mice because the hippocampus is necessarily recruited 
for performing the hidden platform version of Morris water maze 
[72]. Meanwhile, in the novel object recognition, the novel object 
location, and the contextual fear conditioning task, no differences 
between negr1 -/- and wild-type mice were observed, suggesting 
that Negr1 expression is not critical for recognition memory or 
contextual fear memory (Fig. 3). It is interesting that, although 
negr1 -/- mice exhibited impaired spatial learning and memory, they 
showed no significant differences in the recognition task or con-
textual fear conditioning task (Fig. 3). One plausible explanation 
for these distinct behavioral phenotypes is that Negr1 may differ-
entially regulate each neural circuit. Behavioral performance in the 
Morris water maze depends primarily on the hippocampus region 
in which Negr1 is highly expressed. However, novel object recog-
nition and location tests are affected by both the cerebral cortex 
and hippocampus [73], and neural circuits between the cerebral 
cortex and amygdala areas are critical regions for performance in 
the contextual fear conditioning test [74-76]. Brain regional dif-
ferences in expression levels of Negr1 might have caused different 
cognitive behavioral performances of negr1 -/- mice (spatial learn-
ing vs. fear learning; Table 2). Therefore, future studies using opto-
genetics or conditional knockout mice dissecting the brain region-
specific roles of Negr1 are necessary to elucidate the roles of Negr1 
in other psychiatric disorders.

CONCLUSIONS AND FUTURE DIRECTION

In this short review, we summarized and discussed recent stud-
ies on the role of Negr1 in psychiatric disorders. Accumulating 
evidence based on both human and animal studies support critical 
roles of Negr1 in psychiatric disorders such as MDD, schizophre-
nia, and ASD. However, the molecular and cellular mechanisms 
underlying Negr1’s role in these psychiatric disorders remain 
elusive. Considering the diverse brain expression pattern of Negr1 
including hippocampus, sensory cortex, and prefrontal cortex 
region, future studies using brain region/cell type-specific negr1 
conditional knockout mice will be instrumental to elucidate the 
pathophyisological mechanisms of Negr1 in psychiatric disor-
ders. Concerted effort in the fields of genetics, molecular biology, 
neuroscience, and clinical psychiatric medicine are also needed in 
the future to dissect the exact pathophysiologic function of this 
molecule. Although the mechanisms need to be elucidated, studies 
have proposed Negr1 as a novel target for treatment of psychiatric 
disorders. Considering the high comorbidity between depression 
and obesity, Negr1 may act as a central hub bridging the two dis-
eases. If so, Negr1 can be a critical common target for treatment of 
individuals with MDD comorbid with obesity.
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