
INTRODUCTION

Stress—commonly defined as a disruption of homeostasis—im-
pacts a variety of behavioral and physiological parameters, ranging 
from cardiac and respiratory patterns to arousal and emotional 
states [1-8]. While adaptive stress responses are essential for the 
survival and well-being of all animals, excessive and maladaptive 
stress responses contribute to the etiology of numerous disorders, 
including anorexia, depression, and anxiety disorder [7, 9-13]. As 
such, considerable effort has been extended in gaining a mecha-

nistic understanding of stress responses, which is still an active 
research area [14-23]. 

A body of research has established that multiple forebrain struc-
tures coordinately orchestrate stress responses [24-27]. Among 
these brain regions, many distinct subregions and cell types of the 
LS have been implicated in diverse stress-related functions [28-
36]. Recent studies have revealed a role of the LSd in stress-related 
behaviors [29, 30, 34, 36], where neurons expressing somatostatin 
(a neuropeptide also linked to stress in different parts of the brain 
[37-42]) are concentrated [28-30, 36, 43-46]. Indeed, LSdSst neu-
rons have been shown to be directly innervated by the hippocam-
pus and can modulate contextual fear discrimination [29]. These 
led us to hypothesize that LSdSst neurons may play an important 
role in regulating stress responses.

Norepinephrine (NE) is a key neuromodulator in stress re-
sponses [47-54]. The LS is densely innervated by noradrenergic 
fibers, and some LS neurons express adrenergic receptors [55-
59]. Besides, studies over the past several decades have identified 
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the functional relevance of NE signaling to LS neurons in stress 
[60, 61]. However, the specific identity of LS neurons that receive 
NE signals has not been identified. The locus coeruleus (LC) is a 
pontine brain area that serves as a major source of NE to many 
forebrain areas, including the LS [53-56]. Since noradrenergic 
neurons in the LC are well known to be activated upon diverse 
stressors (such as restraint stress, innate fear, and footshock) [49, 
51-54], their connections to the LS may represent an important 
component of stress reactions.

Here, we explored the role of LSdSst neurons in stress responses 
and sought to determine the effect of NE on LSdSst neurons using 
in vivo fiber photometry, anatomical tracing, ex vivo electrophysi-
ology, and optogenetic stimulations. Our data collectively show 
that LSdSst neurons respond to diverse stressors and their activity 
is modulated by NE, suggesting a link between LSdSst neurons, 
noradrenergic signaling (possibly arising from the LC), and stress 
responses.

MATERIALS AND METHODS

Mice

All procedures were approved by the Seoul National University 
Institutional Animal Care and Use Committee. Adult wild-type or 
heterozygote mice from C57BL/6J background (C57BL/6J mice, 
JAX #000664; Ssttm2.1(cre)Zjh/J, JAX #013044) were groups housed 
(except for the restraint experiment) with ad libitum  access to 
food and water in a temperature- and humidity-controlled room, 
with reverse 12-hr light/dark cycle. Both male and female mice 
at least six weeks of age were used for data collection. Data from 
males and females were pooled as we found no evidence for sex 
differences in all our experiments. All mice used fiber photometry 
recordings were males. All behavior experiments were performed 
during the dark cycle.

Viral constructs

The recombinant adeno-associated virus (AAV) vector express-
ing GCaMP6m (AAV1-hSyn-FLEX-GCaMP6m, 1.2×1013 copies/
ml) was purchased from the Penn Vector Core, and the AAVs ex-
pressing channelrhodopsin (AAV5-EF1α-DIO-hChR2(H134R)-
eYFP, 6.2×1012 copies/ml), eYFP (AAV5-EF1a-DIO-eYFP, 3.5×1012 
copies/ml), optimized rabies G protein (AAV8-CA-Flex-RG, 
1.8×1012 copies/ml) and TVA receptor (AAV8-EF1a-FLEX-
TVAcherry, 5.4×1012 copies/ml) were obtained from the UNC vec-
tor core. The AAV expressing mRuby-fused synaptophysin (AAV-
DJ-hSyn-FLEX-GFP-2A-Synaptophysin-mRuby, 4.0×1013 copies/
ml) was purchased from the Stanford Vector Core. The recombi-
nant EnvA-pseudotyped G-deficient rabies virus vector express-

ing GFP (RV-EnvA-ΔG-GFP) was purchased from the Salk vector 
core or generously provided by B. K. Lim (UCSD).

Stereotaxic surgery

Mice were placed in a stereotaxic frame (Kopf Instruments) 
while resting on a heat pad under 1.5~3.0% isoflurane anesthesia. 
Following hair removal and alcohol disinfection, craniotomy was 
performed using a hand drill (Saeshin, 208B), and 250~300 nl 
of viral vectors were injected to the LS using a pressure injection 
system (Nanoliter 2000) with a pulled glass capillary at 50 nl/min. 
After injection, the capillary was retracted slowly (0.01 mm/s) to 
prevent the virus from flowing backward. The coordinates were 
+1.00 mm antero-posterior (AP), 0 mm medio-lateral (ML), -2.70 
mm dorso-ventral (DV) for LSd stimulation, anterograde projec-
tion mapping, and rabies tracing experiments, except for the fiber 
photometry group. 

For fiber photometry recordings from the LSd, recombinant 
AAVs expressing GCaMP6m were unilaterally injected into the 
LSd of Sstcre/+ mice at -18 degree angle relative to the sagittal plane 
at +1.00 mm AP, -0.44 mm ML, -2.79 mm DV to avoid the lateral 
ventricles. Then a low-autofluorescence fiberoptic cannula (Doric 
Lenses, NA 0.48, 400 µm core) was implanted 50 μm above the 
virus injection site in the same manner. The cannulae were affixed 
to the skull with C&B Metabond (Parkell) and dental cement.

For optogenetic stimulation experiments, recombinant AAVs 
expressing channelrhodopsin (ChR2) were injected into the LSd 
of Sstcre /+ mice, and fiberoptic cannulae (NA 0.22, 200 µm core) 
were bilaterally implanted. The coordinates for cannulae were 
+1.00 mm AP, ±1.05 mm ML, -2.00 mm DV with a 16-degree 
angle relative to the sagittal plane for the LSd. Angled implantation 
enabled bilateral implantation. For control cohorts, Sstcre /+ mice 
were injected with the AAV expressing eYFP, or Cre-negative sib-
lings of Sstcre/+ mice were injected with the AAV expressing ChR2. 
Because there were no discernible differences in our behavioral 
measurements between the two control groups, we combined the 
data from both groups. For the experiments that used head fixa-
tion, a custom-made stainless steel bar (4.0×1.0×1.0 mm3) was at-
tached to the dental cement to allow subsequent head fixation to a 
custom-made station.

For anterograde projection mapping, AAVs expressing GFP and 
mRuby-fused synaptophysin were injected, and after 3~4 weeks, 
mice were euthanized and processed for histology. For rabies trac-
ing experiments, AAVs expressing Cre-dependent TVA and G 
were injected into the LSd of Sstcre/+ mice. After 3 weeks, recombi-
nant EnvA-pseudotyped G-deficient rabies virus (RVΔG) express-
ing eGFP was injected into the LSd. RVΔG selectively infects TVA-
expressing LSdSst neurons, and co-expression of G enables LSdSst 
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neurons to complement RVΔG and produce infectious rabies 
viruses that spread to their direct presynaptic partners. After 8-9 
days, mice were euthanized and processed for histology.

The incision was sutured, and antibiotics and analgesics were 
given to the mice. Mice were kept in their home cages for four 
weeks to allow for recovery and adequate viral expression.

Fiber photometry

Fiber photometry recordings were performed as previously de-
scribed [62, 63]. Briefly, excitation lights from 470-nm and 405-
nm LEDs (Thorlabs, M470F3/M405F1) that were sinusoidally 
modulated by the RZ5P processor (Tucker Davis Technologies) 
at 211 Hz and 531 Hz, respectively, were delivered to the target re-
gion of mice via a low-autofluorescence fiberoptic patch cord and 
cannula (Doric Lenses, 400 μm-core, 0.48 NA). The light intensity 
was maintained at a maximum of 20 μW during recordings. The 
emitted fluorescence was detected by a femtowatt photoreceiver 
(Newport, 2151). The resulting signal was demodulated, amplified, 
and collected at ~1 kHz by the RZ5P processor. To correlate the 
photometry signals with behavior, behavioral experiments were 
recorded using a video camera, and the location and activity of the 
mice were automatically tracked by video tracking software (Nol-
dus Ethovision). A TTL pulse generated by a pulse generator (San-
works, Pulse Pal) was split and fed into the RZ5P processor and 
a TTL-triggered blue LED was placed in the field of view where 
mice could not see. For the footshock, event timestamps marking 
shock deliveries were used.

Optogenetic manipulations

For optogenetic stimulations, 5 or 10 mW blue light (159 mW/
mm2 at the tip of the patch cords) was generated by a 473-nm 
laser (MBL-III-473; OEM Laser Systems) and delivered to mice 
through fiberoptic patch cords (0.22 NA, 200 μm diameter; New-
doon) connected by a rotary joint (Doric Lenses). Light pulses (5 
or 10 ms pulse trains at 15 Hz) were generated by controlling the 
blue laser with a pulse generator (Pulse Pal, Sanworks). Light pulse 
trains were delivered throughout the experimental session unless 
otherwise stated.

Behavioral assays

To reduce stress caused by experimenters, all mice were handled 
for at least 5 days prior to behavior experiments. To reduce the 
stress caused by the patch cord connection, mice were first con-
nected to a patch cord and placed in a new cage for 5 min before 
being introduced to the behavior arena. To avoid interactions 
between experiments, different behavioral assays were performed 
at least two weeks apart. Behavioral tests that cause severe stress 

in mice (e.g., footshock, restraint stress, and tail suspension) were 
carried out at the end (specifically, for the footshock experiment) 
or in a separate cohort (for the restraint stress and tail suspension 
experiments). For all behavior assays where video analysis was ap-
propriate, video tracking software (Noldus, EthoVision XT) was 
used to track the location and activity of mice.

For the elevated plus maze test, mice were placed in a plus-
shaped plastic maze, consisting of two open and closed arms (30×5 
cm) extending from a central platform elevated from the ground 
by 50 cm. Each mouse was initially placed in closed arms, and the 
behavior was recorded for 10 min for all experiments. 

For the open field test, mice were placed in an open field cham-
ber (50×50×50 cm), where the center zone was defined as a square 
at the center (20×20 cm). Each mouse was placed at the corner at 
the beginning of the session. Mouse behavior was recorded for 10 
min for fiber photometry experiments. For stimulation experi-
ments, mice were recorded for 20 min, in which laser stimulation 
was applied at the second and fourth 5-min epochs; the two laser-
off and laser-on epochs were pooled for analysis.

To conduct the fiber photometry test during the restraint test, 
mice were introduced into a clear Plexiglas tube (3 cm inner di-
ameter) and two black plastic gates with holes for the nose and 
tail were inserted to hold mice in place tightly. For the baseline 
recording, single-housed mice were connected to the patch cord, 
returned to the home cage, and the fiber photometry recording 
began after 5 min. After baseline recording in the home cage for 
10 min, mice were briefly anesthetized with isoflurane and placed 
into the restraint apparatus. The restraint apparatus was then 
placed in a behavioral chamber (25×25×25 cm) for 45 min. Mice 
were then returned to the home cage and the recording was con-
tinued to monitor the post-restraint responses.

For the footshock test, the mice were placed in a behavioral 
chamber (18×20×36 cm) with a metal grid floor connected to an 
electric shock generator (Precision animal shocker, Coulbourn). 
After 10 min of baseline recording, a footshock (0.2 mA, 2 s) was 
delivered at a pseudo-random interval (90 s on average) 5 times. 

For the tail suspension test, the tail of mice was attached to a bar 
that was 40 cm elevated from the ground. A 2-cm tube was insert-
ed through the tail to prevent the mice from climbing up during 
the test. The session was divided into three 3-min epochs, where 
the laser was turned off, on, and off, respectively.

For the real-time place preference test, mice were placed in a 
white plastic arena (50×25×25 cm) consisting of two identical 
chambers with a slit to freely move across the chambers for 15 min. 
One chamber was paired with laser stimulation, and the choice of 
the stimulation-paired chamber was counterbalanced across mice.

To measure heart and respiratory rates, pulse oximetry (MouseOx 
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Plus, Starr Life Sciences) was used. First, mice were shaved around 
the neck, then habituated to head fixation and the collar sensor for 
30 min a day, at least for 3 days. For each recording session, mice 
were acclimated to the head fixation and collar sensor for 5 min, 
then the recording began. Heart and respiratory rates were mea-
sured by a collar sensor attached to the animal’s neck for 9 min, in 
which 3-min laser stimulation was applied from 3 min after the 
recording began.

Ex vivo electrophysiology

Mice were anesthetized with isoflurane and the brains were ex-
tracted. Acute 300 μm-thick coronal slices were obtained using a 
vibratome (Leica VT1200S) in an ice-cold dissection solution (in 
mM; 212 sucrose, 3 KCl, 26 NaHCO3, 1.25 NaH2PO4, 7 MgCl2, 
and 10 glucose, gassed with 95% O2, and 5% CO2). Slice was re-
covered in artificial cerebrospinal fluid (aCSF) (in mM; 118 NaCl, 
2.5 KCl, 11 glucose, 1 NaH2PO4, and 26.2 NaHCO3, gassed with 
95% O2 and 5% CO2) at 35℃ for an hour, and then maintained at 
room temperature. All electrophysiological recording was made 
under the constant perfusion of aCSF heated to 30℃. Neurons 
were visualized with an upright microscope (Nikon, Eclipse FN1) 
equipped with both DIC optics and a filter set for visualizing eYFP 
(ChR2) and tdTomato, using a 40× water-immersion objective and 
an sCMOS camera (Andor, Zyla 4.2). 

Whole-cell recordings were made from fluorophore-labeled or 
non-labeled LSd neurons, using patch pipettes (2~6 MΩ) filled 
with either potassium-based internal solution (for current-clamp 
analyses; in mM; 130 K-gluconate, 10 HEPES, 0.6 EGTA, 5 KCl 
and 2.5 MgCl2, pH 7.3) or cesium-based internal solution (for 
voltage-clamp experiments; in mM; 115 Cs-methanesulphonate, 
20 CsCl, 10 HEPES, 2.5 MgCl2, 0.6 EGTA, 5 QX314, 4 Na2-ATP, 0.4 
Na2-GTP, and 10 Na-phosphocreatin, pH 7.3). Series resistance 
was typically 10-15 MΩ. Neuronal activity was filtered at 2 kHz, 
sampled at 20 kHz, and recorded to disk using Multiclamp 700B 
and Clampex 10.3 (Molecular Devices).

To record optogenetically evoked action potential, 3.5~5.5 mW 
blue light generated by a 473-nm blue laser was delivered to slices 
through fiberoptic patch cords, while recording from ChR2-
expressing neurons at a holding current of 0 pA. Pulsed input sig-
nals (5-ms pulse trains at 15 or 30 Hz) were generated by pClamp 
(Molecular Devices). To record miniature excitatory postsynaptic 
current (mEPSCs), LSd neurons were recorded at a holding po-
tential of -70 mV, with aCSF containing 50 μM picrotoxin and 1 
μM tetrodotoxin. Recorded data were analyzed using Minianalysis 
6.0.7 (Synaptosoft).

Data analysis

All data were analyzed with custom-written Matlab (Mathworks) 
code. The photometry signal was analyzed as previously described 
[62, 63]. Briefly, data were low-pass filtered at 2 Hz, downsampled 
to 100 Hz, and a linear function scaled the 405-nm signal to the 
470-nm signal to obtain the fitted 405-nm signal. The ΔF/F was 
calculated as (raw 470 nm signal – fitted 405 nm signal) / (fitted 
405 nm signal). Peri-event time plots were created using either the 
TTL timestamps generated by shocker-triggering pulse generators 
or timestamps marked by manual video analysis.

In anxiety tests, ΔF/F for specific zones was normalized using av-
erage and standard deviation of ΔF/F values from the whole-ses-
sion data. For peri-event plots, ΔF/F was normalized using mean 
and standard deviation from -5 s to -2.5 s relative to zone entrance 
events. Only zone entrance events with intervals longer than 5 
s were included in the analysis, to ensure that another entrance 
event does not influence the defined baseline. To examine the cor-
relation between the calcium activity and the movement velocity 
of mice, normalized ΔF/F and velocity values from the open field 
test were binned into 1-s intervals.

In the restraint stress experiment, ΔF/F values were normalized 
by subtracting the average ΔF/F of the baseline recording (from 
the first homecage recording) and dividing the difference by the 
baseline standard deviation. For the analysis of the restraint epoch, 
recordings from the last 30 min were used to exclude the peri-
ods that could have been potentially affected by brief anesthesia 
preceding restraint. The peak time and amplitude of individual 
calcium transients were identified based on the maximum value of 
the thresholded signal within each transient, using the code gener-
ously provided by Rothschild [64].

In the footshock test, ΔF/F during shock was normalized using 
the mean and standard deviation of ΔF/F values from the 10-min 
baseline recordings. For peri-event time plots, the baseline was de-
fined as 10 s preceding shock delivery in footshock tests. 

Histology and microscopy

Mice were anesthetized and transcardially perfused using ice-
cold 1× PBS and 4% paraformaldehyde (PFA) solution in PBS. 
Brains were extracted and fixed overnight in PFA solution, and 
equilibrated in 30% sucrose solution, before cutting into 50 µm-
thick sections using a freezing microtome (Leica, SM2010R). Slices 
were stored in a cryoprotectant solution (a 5:6:9 mixture of glyc-
erol, ethylene glycol and PBS) at 4℃. Sections were then washed 
in PBS, incubated for >25 min in 1: 50,000 DAPI solution, washed 
again in PBS and mounted on microscope slides with PVA-
DABCO. Confocal images were obtained on a Zeiss LSM 880 laser 
scanning microscope using 10×/0.45 NA objective lens. Only mice 
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with restricted expression of the desired transgene (GCaMP and 
ChR2) in the LSd were included in the study. Note that while we 
did not demonstrated the specificity of Cre and Cre-dependent 
transgene expressions in Sst -expressing LSd neurons of Sstcre /+ 
mice (i.e., Ssttm2.1(cre)Zjh/J, JAX #013044), one previous study used the 
same mouse line to Cre-dependently express transgenes in LSdSst 
neurons [45], and another study demonstrated the specific expres-
sion of Cre in Sst-expressing neurons in the dorsomedial striatum 
[65].

Statistical analysis

Statistical analyses and linear regressions were performed using 
Matlab (Mathworks) or Prism (GraphPad). We used a two-tailed 
Wilcoxon rank-sum test, one-way repeated measures ANOVA, 
two-way repeated measures ANOVA with subsequent Bonferroni 
post-tests, or Pearson correlation depending on the experimental 
paradigm. *p<0.05, **p<0.01, ***p<0.001. Data were presented as 
mean±s.e.m. unless otherwise noted. No statistics to determine 
sample size, blinding or randomization methods were used. Viral 
expression and implant placement were verified by histology be-
fore mice were included in the analysis.

RESULTS

LSdSst neurons are activated by diverse stressors

To directly assess if LSdSst neurons are activated in response to 
stressors in vivo, we examined their real-time activity using fiber 
photometry. For this experiment, we injected Cre-inducible AAV 
vectors carrying calcium reporter GCaMP6 in the LSd of Sstcre /+ 
mice (Fig. 1A) and implanted a fiberoptic cannula slightly above 
the injection site. Sinusoidally modulated 470 and 405 nm lights 
were delivered to each LS subregion to stimulate GCaMP6 in a 
Ca2+-dependent and independent manner, respectively, and the 
signals from emitted photons were detected, de-modulated, and 
collected (Fig. 1B). This experimental design enabled ratiometric 
measurements of GCaMP activity, yielding signals minimally 
compromised by motion artifacts and ambient light [62, 63].

We first examined if the activity of LSdSst  neurons correlates 
with anxiety levels by recording from these neurons during an 
open field test, a well-established behavioral assay for anxiety. We 
observed that this population exhibited a significant increase in 
activity in the center zone of the open field (Fig. 1D, E), which is 
the anxiogenic, stress-inducing area of the open field arena. Con-
sistently, the peri-event plot of average calcium activity revealed 
that activities of LSdSst  neurons increase upon the center zone 
entry (Fig. 1F). In contrast, we observed only weak correlations 
between the normalized calcium activity and the velocity of the 

animals (Fig. 1C, Pearson’s r=0.25). To further examine the correla-
tive functions of LSdSst neurons in anxiety, we next recorded from 
these neurons during the elevated plus maze test, another exten-
sively validated anxiety assay. In line with the result from the open 
field test, activities of LSdSst neurons were significantly increased 
in, and upon the entry of, the open arms of the maze (Fig. 1G~I). 
Thus, LSdSst neurons are activated in anxiogenic and stressful envi-
ronments.

We then asked if LSdSst neurons are activated by other types of 
stressors, such as physical restraint for a prolonged time, or brief 
electric footshocks. We found that physical restraint in a cylindri-
cal tube induced a strong increase in the amplitude of the calcium 
transients for the entire duration of the restraint (Fig. 1J, K). LSdSst 
neurons were also potently activated by brief two-second electric 
footshocks (Fig. 1L~N). Notably, the degree of activation by elec-
tric footshock was considerably larger than the activation of LSdSst 
neurons in anxiogenic and stressful environments (i.e. the center 
zone of the open field or the open arms of the elevated plus maze), 
indicating that the response amplitude is likely correlated with the 
intensity of the stress stimulus. These results also show that LSdSst 
neurons can be activated by diverse stressors, of which durations 
range from a few seconds to tens of minutes.

LSdSst neurons are connected with regions implicated in 

stress response 

To gain insight into how LSdSst neurons process the stress signals, 
we explored the output and input connectivity of LSdSst neurons. 
First, to probe the anatomical projection targets of LSdSst neurons, 
we infused the AAV vector carrying a Cre-dependent construct 
encoding GFP and synaptophysin-fused mRuby (which labels the 
neural processes and terminal boutons, respectively) in the LSd of 
Sstcre/+ mice (Fig. 2A, B). We found dense GFP and mRuby signals 
in the forebrain area that are known to regulate stress response, for 
example, the ventral basal forebrain (vBF) (including the nucleus 
of the horizontal limb of the diagonal band (HDB), magnocel-
lular preoptic nucleus (MCPO), and substantia innominata (SI)), 
anterior hypothalamus (AH), LH, and supramammillary nucleus 
(SuM), as well as the LSv (Fig. 2C).

Next, to probe the monosynaptic inputs of LSdSst neurons, we 
injected Cre-inducible AAV vectors expressing avian-specific 
retroviral receptor TVA and a rabies glycoprotein (RG) in the LSd 
of Sstcre/+ mice. After three weeks, we injected EnvA-pseudotyped 
RG-deficient rabies virus (RVΔG) carrying eGFP in the LSd, se-
lectively infected TVA-expressing LSdSst neurons and produced 
reconstituted viral particles that can spread to their direct presyn-
aptic inputs (Fig. 2D) [66]. The resulting eGFP-labeled neurons, 
which correspond to the monosynaptic inputs of LSdSst neurons, 
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were densely located in the hippocampus (HPC), but were also 
found in in many areas known to be activated by stress, such as 
the ventral pallidum (VP), lateral preoptic area (LPO), lateral hy-
pothalamus (LH), periaqueductal gray (PAG) and LC, albeit more 
sparsely than the hippocampus (Fig. 2E, F). These results, which 
are consistent with a previous report of retrograde tracing from 
the LSd [67], show that LSdSst neurons are connected with numer-
ous structures functionally implicated in stress response. 

NE increases excitatory synaptic transmission onto LSdSst 

neurons 

Since LSdSst neurons are directly innervated by LC neurons (Fig. 
2E, F), NE release from LC may modulate the activity of LSdSst 
neurons. To test if NE can modulate the basal synaptic activity of 
LSdSst neurons, we injected a Cre-inducible AAV vector carrying 
eYFP in the LSd of Sstcre /+ mice and performed whole-cell elec-
trophysiological recordings from LSdSst neurons that are virally 

Figure 1. An et al.
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labeled with eYFP (Fig. 3A). We recorded and analyzed miniature 
excitatory postsynaptic currents (mEPSCs) from LSdSst neurons 
before and after the bath application of NE (Fig. 3B). Strikingly, we 
observed that the amplitude of mEPSCs was increased after the 
application of NE (Fig. 3C), but the frequency remained unaltered 
(Fig. 3D). These results demonstrate that NE increases spontane-
ous excitatory synaptic transmission onto LSdSst neurons, possibly 
via a postsynaptic mechanism. In contrast, bath application of cor-
ticosterone did not affect either mEPSC frequency or amplitude 
(Fig. 3E~G). These results show that NE increases excitatory syn-

aptic transmission onto LSdSst neurons, and support the possibility 
that NE release from noradrenergic LC neurons in response to 
stressors may contribute to the excitatory response of LSdSst neu-
rons to diverse stressors as observed in Fig. 1.

Optogenetic stimulation of LSdSst neurons does not affect 

stress-related behaviors or autonomic functions

We next sought to determine the causal function of LSdSst neu-
rons using optogenetics. To validate the optogenetic stimulation, 
and also to determine the optimal illumination frequency that 
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enables reliable triggering of action potentials in these neurons, we 
performed whole-cell electrophysiological recordings from LSdSst 
neurons that are virally transduced with a light-gated cation chan-
nel channelrhodopsin-2 (ChR2) (Fig. 4A). Delivery of light pulse 
trains at either 15 or 30 Hz evoked action potentials in ChR2-
expressing LSdSst neurons (Fig. 4B), but the success rate (action 
potential fidelity) was only ~55% for 30 Hz stimulations, whereas 
the fidelity was >93% in case of 15 Hz stimulations (Fig. 4C). Be-
cause of this, as well as previous findings that the 15 Hz frequency 
is in the range of natural firing rates of LS neurons during stress 
[31, 68], we chose to use 15 Hz stimulation, although we note that 
a previous study used a variant of ChR2 optimized for ultrafast 
stimulation to perform reliable stimulations at even higher fre-
quency ranges [45].

To explore the behavioral effect of activating LSdSst neurons, we 
Cre-dependently expressed ChR2 in this population and bilater-
ally implanted fiberoptic cannula slightly above the injection site 
(Fig. 4D). We then delivered light pulses through the fiberoptic 
cannula to stimulate LSdSst  neurons, while subjecting mice to 
stress-related behavioral assays. However, we found no effect in 
any of the assays that we performed. Optogenetic stimulation of 

LSdSst neurons did not affect anxiety-like behaviors in the elevated 
plus maze test (Fig. 4E) or the open field test (Fig. 4F). In the open 
field test, during the light-on epoch, there was no significant differ-
ence in velocity between ChR2 and control mice (Fig. 4G). In addi-
tion, the number of the center zone crossing was not significantly 
changed (n =11 ChR2, n =11 Ctrl, two-way repeated measures 
ANOVA interaction, F (1,20)=0.095, p=0.7614). Next, activating 
these neurons left depression-like symptoms in the tail suspen-
sion test unaltered (Fig. 4H), and did not induce place preference 
or avoidance in the real-time place preference test (Fig. 4I). Given 
the negative results from all of our behavioral assays, we further 
sought to determine if optogenetic stimulation of LSdSst neurons 
might affect physiological parameters, such as heart and respira-
tory rates. However, this manipulation did not influence either the 
heart rate (Fig. 4J) or the respiratory rate (Fig. 4K). Thus, under 
our experimental conditions, simultaneous activation of the entire 
LSdSst population using optogenetic means has no effect on stress-
related behavior or physiology.

Figure 3. An et al.

Befo
re

Afte
r

0

5

10

15

20

25

m
EP

SC
 a

m
pl

itu
de

 (p
A)

Befo
re

Afte
r

0

1

2

3

4

5

m
EP

SC
 fr

eq
ue

nc
y 

(H
z)*

F G

C DB

Befo
re

Afte
r

0

4

8

12

16

20

m
EP

SC
 a

m
pl

itu
de

 (p
A)

Befo
re

Afte
r

0

2

4

6

8

m
EP

SC
 fr

eq
ue

nc
y 

(H
z)

A

Sstcre/+ mice

AAV-EF1a-DIO-eYFP

Whole-cell recording from
LSdSst neurons

eYFPDIC

E

No drug

100 nM Corticosterone

10
 p

A

1 s

No drug

10 µM Norepinephrine

Fig. 3. NE increases spontaneous excitatory synaptic transmission onto LSdSst neurons. (A) Top, schematic of Cre-dependent expression of eYFP and 
patch-clamp whole-cell recording from LSdSst neurons. Bottom, representative differential interference contrast (DIC) and fluorescence images of a LS-
dSst neuron expressing eYFP during recording. (B~D) Bath application of 10 μM NE increased mEPSC amplitude without affecting mEPSC frequency. 
Representative traces (B) and group data for mEPSC amplitude (n=9, p=0.039) (C) and frequency (n=9, p=0.570) (D). (E~G) Application of 100 nM 
corticosterone did not affect either mEPSC amplitude (n=7, p=0.297) (F) or frequency (n=7, p=0.938) (G). Scale bar, 10 pA, 1 s. Data are represented as 
mean±s.e.m. Asterisks indicate significance levels for comparisons using Wilcoxon rank-sum test (*p<0.05).



384 www.enjournal.org https://doi.org/10.5607/en22024

Myungmo An, et al.

DISCUSSION

In this study, we investigated the role of LSdSst neurons in stress 
responses and their connectivity, as well as the effect of NE on 
these neurons. We first demonstrated that LSdSst neurons are ac-
tivated by a variety of stressors, the duration of which can range 
from seconds to minutes, and the amplitude of which likely corre-
lates with the intensity of the stress stimulus, using fiber photome-

try (Fig. 1). Anatomical tracing in both anterograde and retrograde 
directions revealed that LSdSst neurons receive inputs from key 
stress-responsive regions including the LC and in turn project to 
many areas that are known to mediate stress-related functions (Fig. 
2). Next, we found that, in the ex vivo slice patch-clamp setting, NE 
increases spontaneous excitatory synaptic transmission onto LSdSst 
neurons (Fig. 3). Optogenetic stimulation of the LSdSst population, 
on the other hand, had no effect on stress-related behavior and 

Figure 4. An et al.
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physiology—at least not in the tests performed in this study (Fig. 4). 
Several recent studies have also investigated the function and 

anatomy of LSdSst neurons, each from a distinct perspective [29, 
30, 45]. Remarkably, among these, an elegant study by Besnard and 
colleagues has employed miniaturized microscopes to character-
ize the responses of individual LSdSst neurons under various stress-
ful situations [29]. This study found that approximately 47% of 
individual LSdSst neurons were activated upon footshock in at least 
one experimental session and that the calcium transient frequency 
of LSdSst neurons was higher in the open arms of the elevated plus 
maze than in the closed arms, which is consistent with the overall 
responses of the LSdSst population that we observed using fiber 
photometry (Fig. 1G~I). However, the calcium transient frequency 
of LSdSst neurons decreased in the center of the open-field, which 
appears inconsistent with our data (Fig. 1D~F) and contradicts 
the previous result from their elevated plus maze test. This dis-
crepancy may be due to the difference in analysis parameters. In 
our study, we used fiber photometry to measure and analyze the 
amplitudes of averaged calcium signals of the LSdSst population. 
On the other hand, Besnard and colleagues employed miniature 
endoscopes to monitor the calcium transients of individual LSdSst 
neurons, and primarily focused on analyzing the frequency of the 
calcium transients, which may not correlate with the amplitude 
of the bulk calcium signals measured in our study. Notably, they 
reported that the maximum calcium amplitude of LSdSst neurons 
was higher in the open arms of the elevated plus maze than in the 
closed arms, and was also higher in the center of the open field 
than the periphery, which are consistent with each other and also 
in agreement with our results. Further research into the amplitude 
of calcium transients of LSdSst neurons in stressful environments 
would be useful in resolving this issue. 

In addition, Besnard and colleagues [29] found that optogenetic 
stimulation of LSdSst neurons reduced anxiety-like behaviors in 
the elevated plus maze test, whereas we found no effect (Fig. 4E), 
despite the similar targeting and optogenetic stimulation condi-
tions (note that another recent study also found that chemogenetic 
stimulation of LSdSst neurons had no effect on anxiety-like behav-
ior in the elevated plus maze test [30]). We speculate that this dis-
parity might be attributable to the different circadian timing used 
for the behavioral assays (light cycle in [29] vs. dark cycle in our 
study) and/or the light intensity during the behavioral assays (700 
lux in [29] vs. 15 lux in our study), which considerably impacts the 
baseline stress levels of the animals [69-71]; one possible explana-
tion is that LSdSst neurons may regulate anxiety-like behaviors only 
in stressful situations, which could be formally tested in the future 
studies. 

Simultaneously, the study by Besnard and colleagues [29] re-

vealed significant functional heterogeneity within the LSdSst 
neuron population, which may help to explain to other reported 
roles of LSdSst neurons, such as modulation of contextual fear dis-
crimination [29] or food-seeking behavior [45]. Distinct subpopu-
lations of LSdSst neurons may play divergent roles. A recent paper 
that dissected the connectivity of LSd neurons and delineated the 
functionally different neural subpopulations in this region lends 
support to this viewpoint [36].

Numerous studies have revealed that NE is released upon stress-
ors and modulates a variety of behavioral and physiological func-
tions [49, 72-76]. We observed that NE, but not corticosterone, 
increased excitatory synaptic transmission of LSdSst neurons likely 
via a postsynaptic mechanism (Fig. 3). These results suggest that 
modulation of adrenergic receptors expressed on LSdSst neurons 
may elicit behavioral stress-related functions. Indeed, microinjec-
tion of NE into the LS has been reported to drive stress-related 
behaviors, while injecting either α1- or β-receptor antagonists into 
LS attenuates defensive behavior following acute footshock stress 
[60, 61]. It would be interesting to see if adrenergic receptors are 
expressed on LSdSst neurons and if their activation causally regu-
lates stress responses. Furthermore, noradrenergic LC neurons 
project widely to multiple brain areas, including the LS [28, 55, 
56]. Using retrograde tracing, we found that LSdSst neurons receive 
inputs from the LC neurons, indicating that the LSdSst neurons 
likely receive NE from noradrenergic LC neurons. Given the well-
established role of noradrenergic LC neurons in stress responses, it 
is tempting to speculate that activation of noradrenergic LC neu-
rons releases NE to LSdSst neurons, and a subpopulation of LSdSst 
neurons expressing adrenergic receptors is activated by NE and 
elicits stress-related behaviors such as anxiety-like behaviors.

However, we observed that optogenetic stimulation of all LSdSst 
neurons has no effect in stress-related behavior or physiology, at 
least under our experimental conditions (Fig. 4). We speculate that 
this is owing to the functional heterogeneity as discussed above. 
More specific targeting of functionally discrete subpopulations of 
LSdSst neurons would likely reveal their causal roles. On the other 
hand, we suppose that the loss-of-function experiments are un-
likely to elicit noticeable effects, since multiple pathways support-
ing stress responses may work in parallel and redundant manners. 
For example, noradrenergic LC neurons are considered to be an 
important circuit node for stress-related behaviors, such as stress-
induced anorexia and anxiety-like behaviors. Indeed, activation of 
this circuitry elicits anorexia or anxiety-like behaviors [49, 75, 77]. 
However, inhibition of these neurons has no effect on basal feed-
ing or anxiety-like behaviors [49, 77]. In addition, decades of stud-
ies have indicated that many stress hormones and neuropeptides 
modulate the HPA axis, dopamine system, and frontal cortical 
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areas to elicit stress-related behaviors [2, 78].
Collectively, our results have shown the activity pattern of LSdSst 

neurons in stress responses and suggested the role of the norad-
renergic signaling in this process. Further studies are required to 
provide an understanding of the functional role of the noradren-
ergic signaling in lateral septum neurons in stress responses, which 
may also bring clinical insights into stress-related disorders.
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