Articles

Article

Perspective

Exp Neurobiol 2019; 28(2): 131-133

Published online April 30, 2019

https://doi.org/10.5607/en.2019.28.2.131

© The Korean Society for Brain and Neural Sciences

Tweety Homologs (TTYH) Freshly Join the Journey of Molecular Identification of the VRAC/VSOR Channel Pore

Yasunobu Okada*

Department of Molecular Cellular Physiologye, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki 444-8787, Japan

Correspondence to: *To whom correspondence should be addressed.
TEL: 81-564-59-5262, FAX: 81-564-59-5263
e-mail: okada@nips.ac.jp

References

  1. Okada Y. Volume expansion-sensing outward-rectifier Cl channel: fresh start to the molecular identity and volume sensor. Am J Physiol 1997;273:C755-C789.
    Pubmed
  2. Nilius B, Eggermont J, Voets T, Buyse G, Manolopoulos V, Droogmans G. Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Biol 1997;68:69-119.
    Pubmed
  3. Sabirov RZ, Merzlyak PG, Okada T, Islam MR, Uramoto H, Mori T, Makino Y, Matsuura H, Xie Y, Okada Y. The organic anion transporter SLCO2A1 constitutes the core component of the Maxi-Cl channel. EMBO J 2017;36:3309-3324.
    Pubmed
  4. Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 2014;157:447-458.
    Pubmed
  5. Voss FK, Ullrich F, Münch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 2014;344:634-638.
    Pubmed
  6. Han YE, Kwon J, Won J, An H, Jang MW, Woo J, Lee JS, Park MG, Yoon BE, Lee SE, Hwang EM, Jung JY, Park H, Oh SJ, Leec CJ. Tweety-homolog (Ttyh) family encodes the pore-forming subunits of the swelling-dependent volume-regulated anion channel (VRACswell) in the brain. Exp Neurobiol 2019;28:183-215.
  7. Hazama A, Okada Y. Ca2+ sensitivity of volume-regulatory K+ and Cl channels in cultured human epithelial cells. J Physiol 1988;402:687-702.
    Pubmed
  8. Cahalan MD, Lewis RS. Role of potassium and chloride channels in volume regulation by T lymphocytes. Soc Gen Physiol Ser 1988;43:281-301.
    Pubmed
  9. Okada Y, Okada T, Islam MR, Sabirov RZ. Molecular identities and ATP release activities of two types of volume-regulatory anion channels, VSOR and Maxi-Cl. Curr Top Membr 2018;81:125-176.
    Pubmed
  10. Lutter D, Ullrich F, Lueck JC, Kempa S, Jentsch TJ. Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels. J Cell Sci 2017;130:1122-1133.
    Pubmed
  11. Sato-Numata K, Numata T, Inoue R, Sabirov RZ, Okada Y. Distinct contributions of LRRC8A and its paralogs to the VSOR anion channel from those of the ASOR anion channel. Channels (Austin) 2017;11:167-172.
    Pubmed
  12. Strange K, Yamada T, Denton JS. A 30-year journey from volume-regulated anion currents to molecular structure of the LRRC8 channel. J Gen Physiol 2019;151:100-117.
    Pubmed
  13. König B, Stauber T. Biophysics and structure-function relationships of LRRC8-formed volume-regulated anion channels. Biophys J 2019;116:1185-1193.
    Pubmed
  14. Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ. Cell volume-activated and volume-correlated anion channels in mammalian cells: their biophysical, molecular, and pharmacological properties. Pharmacol Rev 2019;71:49-88.
    Pubmed
  15. Syeda R, Qiu Z, Dubin AE, Murthy SE, Florendo MN, Mason DE, Mathur J, Cahalan SM, Peters EC, Montal M, Patapoutian A. LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell 2016;164:499-511.
    Pubmed
  16. Deneka D, Sawicka M, Lam AK, Paulino C, Dutzler R. Structure of a volume-regulated anion channel of the LRRC8 family. Nature 2018;558:254-259.
    Pubmed
  17. Hagiwara N, Masuda H, Shoda M, Irisawa H. Stretch-activated anion currents of rabbit cardiac myocytes. J Physiol 1992;456:285-302.
    Pubmed
  18. Gaitán-Peñas H, Gradogna A, Laparra-Cuervo L, Solsona C, Fernández-Dueñas V, Barrallo-Gimeno A, Ciruela F, Lakadamyali M, Pusch M, Estévez R. Investigation of LRRC8-mediated volume-regulated anion currents in Xenopus oocytes. Biophys J 2016;111:1429-1443.
    Pubmed
  19. Okada T, Islam MR, Tsiferova NA, Okada Y, Sabirov RZ. Specific and essential but not sufficient roles of LRRC8A in the activity of volume-sensitive outwardly rectifying anion channel (VSOR). Channels (Austin) 2017;11:109-120.
    Pubmed
  20. Elorza-Vidal X, Sirisi S, Gaitán-Peñas H, Pérez-Rius C, Alonso-Gardón M, Armand-Ugón M, Lanciotti A, Brignone MS, Prat E, Nunes V, Ambrosini E, Gasull X, Estévez R. GlialCAM/MLC1 modulates LRRC8/VRAC currents in an indirect manner: Implications for megalencephalic leukoencephalopathy. Neurobiol Dis 2018;119:88-99.
    Pubmed
  21. Formaggio F, Saracino E, Mola MG, Rao SB, Amiry-Moghaddam M, Muccini M, Zamboni R, Nicchia GP, Caprini M, Benfenati V. LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes. FASEB J 2019;33:101-113.
    Pubmed
  22. Yang J, Vitery MD, Chen J, Osei-Owusu J, Chu J, Qiu Z. Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron 2019
  23. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 2014;34:11929-11947.
    Pubmed
  24. Suzuki M, Mizuno A. A novel human Cl channel family related to Drosophila flightless locus. J Biol Chem 2004;279:22461-22468.
    Pubmed
  25. Akita T, Okada Y. Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 2014;275:211-231.
    Pubmed