View Full Text | Abstract |
Article as PDF | Print this Article |
Pubmed | PMC |
PubReader | Export to Citation |
Email Alerts | Open Access |
Exp Neurobiol 2010; 19(1): 1-14
Published online June 30, 2010
https://doi.org/10.5607/en.2010.19.1.1
© The Korean Society for Brain and Neural Sciences
Moussa B. H. Youdim*
Eve Topf and US National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases, Technion-Faculty of Medicine, Efron St., Haifa 31096, Israel, Department of Biology, Yonsei Uinversity, Seoul 120-749, Korea
Correspondence to: *To whom correspondence should be addressed.
TEL: 972-4-8295-290, FAX: 972-4-8513145
e-mail: youdim@tx.technion.ac.il
Parkinson's disease (PD) and Alzheimer's Disease (AD) are severe neurodegenerative disorders, with no drugs that are currently approved to prevent the neuronal cell loss characteristic in brains of patients suffering from PD and AD and all drug treatment are synptomactic. Due to the complex pathophysiology, including a cascade of neurotoxic molecular events that results in neuronal death and predisposition to depression and eventual dementia and etiology of these disorders, an innovative approach towards neuroprotection or neurorestoration (neurorescue) may be the development and use of multifunctional pharmaceuticals. Such drugs target an array of pathological pathways, each of which is believed to contribute to the cascades that ultimately lead to neuronal cell death. In this short review, we discuss examples of novel multifunctional ligands that may have potential as neuroprotective-neurorestorative therapeutics in PD and AD. The compounds discussed originate from synthetic chemistry as well as from natural sources.
Keywords: rasagiline, dual mechanism, adenosine, iron chelation