View Full Text | Abstract |
Article as PDF | Print this Article |
Pubmed | PMC |
PubReader | Export to Citation |
Email Alerts | Open Access |
Exp Neurobiol 2010; 19(2): 83-89
Published online September 30, 2010
https://doi.org/10.5607/en.2010.19.2.83
© The Korean Society for Brain and Neural Sciences
Soo-Jin Oh1, Jee-In Heo1,2, Yoon-Jung Kho2, Jeong-Hyeon Kim1, Hong-Joon Kang1, Seong-Hoon Park3, Hyun-Seok Kim3, Jong-Yeon Shin4, Min-Ju Kim5, Sung Chan Kim1, Jae-Bong Park1, Jaebong Kim1 and Jae-Yong Lee1,2*
1Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 200-702, Korea, 2Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 200-702, Korea, 3Molecular Radiation Oncology, Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA, 4Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, Korea, 5Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
Correspondence to: *To whom correspondence should be addressed.
TEL: 82-33-248-2543, FAX: 82-33-244-8425, e-mail: jyolee@hallym.ac.kr
Nitric oxide (NO) regulates proliferation, differentiation and survival of neurons. Although NO is reported to involve in NGF-induced differentiation of PC12 cells, the role of NO has not been characterized in primary neuron cells. Therefore, we investigated the role of NO in neuronal differentiation of primary cortical neuron cells. Primary cortical neuron cells were prepared from rat embryos of embryonic day 18 and treated with NMMA (NOS inhibitor) or PTIO (NO scavenger). Neurite outgrowth of neuron cells was counted and the mRNA levels of p21, p27, c-jun and c-myc were measured by RT-PCR. Neurite outgrowth of primary cortical neuron cells was inhibited a little by NOS inhibitor and completely by NO scavenger. The mRNA levels of p21 and p27, differentiation-induced growth arrest genes were increased during differentiation, but they were decreased by NOS inhibitor or NO scavenger. On the other hand, the level of c-jun mRNA was not changed and the level of c-myc mRNA was increased during differentiation differently from previously reported. The levels of these mRNA were reversed in NOS inhibitor- or NO scavenger-treated cells. The level of nNOS protein was not changed but NOS activity was inhibited largely by NOS inhibitor or NO scavenger. These results suggest that NO is an essential mediator for neuronal differentiation of primary cortical neuron cells.
Keywords: primary cortical neuron cells, neurite outgrowth, nitric oxide, nitric oxide synthase, butyrate