Articles

  • KSBNS 2024

Article

Original Article

Exp Neurobiol 2014; 23(2): 155-162

Published online June 30, 2014

https://doi.org/10.5607/en.2014.23.2.155

© The Korean Society for Brain and Neural Sciences

Lipocalin-2 Acts as a Neuroinflammatogen in Lipopolysaccharide-injected Mice

Myungwon Jin1,2, Eunha Jang1,2 and Kyoungho Suk1,2*

1Department of Pharmacology, Brain Science & Engineering Institute, 2Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea

Correspondence to: *To whom correspondence should be addressed.
TEL: 82-53-420-4835, FAX: 82-53-256-1566
e-mail: ksuk@knu.ac.kr

Received: April 25, 2014; Revised: May 19, 2014; Accepted: May 20, 2014

Abstract

Lipocalin-2 (LCN2) is a key mediator of various cellular processes. Recent studies have indicated that LCN2 also plays an important role in central nervous system (CNS) injuries and neurological diseases, such as spinal cord injury, stroke, experimental autoimmune encephalomyelitis, and neurodegenerative diseases. Here, we investigated the role of LCN2 in a rodent model of lipopolysaccharide (LPS)-induced neuroinflammation. At 24 hours after intraperitoneal injection of LPS, LCN2 expression was strongly induced in the brain; LCN2 was mainly expressed in endothelial cells, astrocytes, and microglia. Next, we used LCN2-deficient mice to further investigate the role of LCN2 in neuroinflammation. LCN2 deficiency attenuated LPS-induced glial activation in the brain. In a mechanistic study employing glia/neuron co-cultures, LCN2 deficiency reduced glial neurotoxicity. Our results indicate that LCN2 plays a central role in the neuroinflammatory responses following LPS administration, and that LCN2 might contribute to the uncontrolled neurotoxic glial activation under excessive and chronic inflammatory conditions.

Keywords: astrocyte, lipocalin-2, neuron, neuroinflammation, neuroinflammatogen