View Full Text | Abstract |
Article as PDF | Print this Article |
Pubmed | PMC |
PubReader | Export to Citation |
Email Alerts | Open Access |
Exp Neurobiol 2014; 23(2): 178-189
Published online June 30, 2014
https://doi.org/10.5607/en.2014.23.2.178
© The Korean Society for Brain and Neural Sciences
Inah Lee* and Jung Seop Byeon
Department of Brain and Cognitive Sciences, Seoul National University, Seoul 151-742, Korea
Correspondence to: *To whom correspondence should be addressed.
TEL: 82-2-880-8013, FAX: 82-2-871-9129
e-mail: inahlee@snu.ac.kr
It has been suggested that the hippocampus and the prefrontal cortex (PFC) play key roles in representing contextual memory and utilizing contextual information for flexible response selection. During response selection, a correct response should be facilitated and an incorrect response should be inhibited flexibly in association with a cueing stimulus. However, it is poorly understood how the hippocampal and PFC networks behave during such flexible control of facilitation and inhibition of behavioral responses. To find neural correlates of context-cued flexible response selection, the current study employed an object-place paired-associate (OPPA) task in which object A is only rewarded in place 1 and object B is associated with reward in place 2 while recording single units simultaneously from the hippocampus and PFC. During the task, response inhibition in front of a contextually wrong object is required for successful performance and such inhibitory responses were observed before the rat learned the task. A significant proportion of neurons that fired differentially depending on the existence of inhibitory behavior in the PFC was observed during the pre-learning stage. By contrast, the proportion of such neurons in the hippocampus was significantly greater than chance during post-learning stage. The results suggest that the development of inhibitory behavior is a critical behavioral marker that foretells an upcoming acquisition of the task and the hippocampus and PFC are involved in learning contextual response selection by learning how to control the inhibition of behavior as learning progresses.
Keywords: hippocampus, prefrontal cortex, electrophysiology, object, context, memory, learning