View Full Text | Abstract |
Article as PDF | Print this Article |
Pubmed | PMC |
PubReader | Export to Citation |
Email Alerts | Open Access |
Exp Neurobiol 2016; 25(3): 130-138
Published online June 30, 2016
https://doi.org/10.5607/en.2016.25.3.130
© The Korean Society for Brain and Neural Sciences
Jeongeun Sim1#, Areum Jo1#, Bok-Man Kang2#, Sohee Lee1#, Oh Young Bang3,4,Chaejeong Heo1, Gil-Ja Jhon5, Youngmi Lee5 and Minah Suh1,2,4*
1Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, 2Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, 3Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine,4Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, 5Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Koera
Correspondence to: *To whom correspondence should be addressed.
TEL: 82-31-299-4496, FAX: 82-31-299-4506
e-mail: minahsuh@skku.edu
#These authors contributed equally to this work
Ischemia can cause decreased cerebral neurovascular coupling, leading to a failure in the autoregulation of cerebral blood flow. This study aims to investigate the effect of varying degrees of ischemia on cerebral hemodynamic reactivity using
Keywords: Stroke, MCAO model, Optical intrinsic signal imaging, Hemodynamics, Arterial reactivity