View Full Text | Abstract |
Article as PDF | Print this Article |
Pubmed | PMC |
PubReader | Export to Citation |
Email Alerts | Open Access |
Exp Neurobiol 2017; 26(5): 252-265
Published online October 31, 2017
https://doi.org/10.5607/en.2017.26.5.252
© The Korean Society for Brain and Neural Sciences
Ki Chan Kim1, Chang Soon Choi1, Edson Luck T. Gonzales1, Darine Froy N. Mabunga1, Sung Hoon Lee2, Se Jin Jeon3, Ram Hwangbo4, Minha Hong5, Jong Hoon Ryu6, Seol-Heui Han1, Geon Ho Bahn7* and Chan Young Shin1*
1School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, 2College of Pharmacy, Chung-Ang Univeristy, Seoul 06974, 3Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792 , 4Department of Psychiatry, Kyung Hee University Hospital, Seoul 02447, 5Department of Psychiatry, Seonam University, College of Medicine, Myongji Hospital, Goyang 10475, 6Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 7Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea
Correspondence to: *To whom correspondence should be addressed.
Chan Young Shin, TEL: 82-2-2030-7834, FAX: 82-2-2049-6192, e-mail: chanyshin@kku.ac.kr
Geon Ho Bahn, TEL: 82-2-958-8556, FAX: 82-2-969-6958, e-mail: mompeian@khu.ac.kr
The valproic acid (VPA)-induced animal model is one of the most widely utilized environmental risk factor models of autism. Autism spectrum disorder (ASD) remains an insurmountable challenge among neurodevelopmental disorders due to its heterogeneity, unresolved pathological pathways and lack of treatment. We previously reported that VPA-exposed rats and cultured rat primary neurons have increased Pax6 expression during post-midterm embryonic development which led to the sequential upregulation of glutamatergic neuronal markers. In this study, we provide experimental evidence that telomerase reverse transcriptase (TERT), a protein component of ribonucleoproteins complex of telomerase, is involved in the abnormal components caused by VPA in addition to Pax6 and its downstream signals. In embryonic rat brains and cultured rat primary neural progenitor cells (NPCs), VPA induced the increased expression of TERT as revealed by Western blot, RT-PCR, and immunostainings. The HDAC inhibitor property of VPA is responsible for the TERT upregulation. Chromatin immunoprecipitation revealed that VPA increased the histone acetylation but blocked the HDAC1 binding to both
Keywords: telomerase reverse transcriptase, valproic acid, autism, excitatory/inhibitory imbalance, glutamatergic neuronal differentiation