![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Exp Neurobiol 2020; 29(6): 425-432
Published online December 31, 2020
https://doi.org/10.5607/en20041
© The Korean Society for Brain and Neural Sciences
Yoo Rim Kim1,2,3, Chang-Eop Kim1,4, Heera Yoon5, Sun Kwang Kim5,6* and Sang Jeong Kim1,2,3*
1Department of Physiology, Seoul National University College of Medicine, Seoul 08826, 2Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 08826, 3Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 08826, 4Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, 5Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, 6Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
Correspondence to: *To whom correspondence should be addressed.
Sun Kwang Kim, TEL: 82-2-961-0323, FAX: 82-2-961-0333
e-mail: skkim77@khu.ac.kr
Sang Jeong Kim, TEL: 82-2-740-8229, FAX: 82-2-763-9667
e-mail: sangjkim@snu.ac.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
The primary somatosensory (S1) cortex plays a key role in distinguishing different sensory stimuli. Vibrotactile touch information is conveyed from the periphery to the S1 cortex through three major classes of mechanoreceptors: slowly adapting type 1 (SA1), rapidly adapting (RA), and Pacinian (PC) afferents. It has been a long-standing question whether specific populations in the S1 cortex preserve the peripheral segregation by the afferent submodalities. Here, we investigated whether S1 neurons exhibit specific responses to two distinct vibrotactile stimuli, which excite different types of mechanoreceptors (e.g., SA1 and PC afferents). Using
Keywords: Vibrotactile, Mechanoreceptors, Primary somatosensory cortex, Two-photon imaging