Articles

  • KSBNS 2024

Article

Review Article

Exp Neurobiol 2017; 26(4): 179-185

Published online August 31, 2017

https://doi.org/10.5607/en.2017.26.4.179

© The Korean Society for Brain and Neural Sciences

Spike Frequency Adaptation in Neurons of the Central Nervous System

Go Eun Ha and Eunji Cheong*

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea

Correspondence to: *To whom correspondence should be addressed.
TEL: 82-2-2123-5885, FAX: 82-2-2123-8284
e-mail: eunjicheong@yonsei.ac.kr

Received: July 28, 2017; Revised: August 14, 2017; Accepted: August 14, 2017

Abstract

Neuronal firing patterns and frequencies determine the nature of encoded information of the neurons. Here we discuss the molecular identity and cellular mechanisms of spike-frequency adaptation in central nervous system (CNS) neurons. Calcium-activated potassium (KCa) channels such as BKCa and SKCa channels have long been known to be important mediators of spike adaptation via generation of a large afterhyperpolarization when neurons are hyper-activated. However, it has been shown that a strong hyperpolarization via these KCa channels would cease action potential generation rather than reducing the frequency of spike generation. In some types of neurons, the strong hyperpolarization is followed by oscillatory activity in these neurons. Recently, spike-frequency adaptation in thalamocortical (TC) and CA1 hippocampal neurons is shown to be mediated by the Ca2+-activated Cl- channel (CACC), anoctamin-2 (ANO2). Knockdown of ANO2 in these neurons results in significantly reduced spike-frequency adaptation accompanied by increased number of spikes without shifting the firing mode, which suggests that ANO2 mediates a genuine form of spike adaptation, finely tuning the frequency of spikes in these neurons. Based on the finding of a broad expression of this new class of CACC in the brain, it can be proposed that the ANO2-mediated spike-frequency adaptation may be a general mechanism to control information transmission in the CNS neurons.

Keywords: spike-frequency adaptation, anoctamin-2, calcium-activated chloride channel, calcium-activated potassium channel,
afterhyperpolarization, thalamocortical neuron