View Full Text | Abstract |
Article as PDF | Print this Article |
Pubmed | PMC |
PubReader | Export to Citation |
Email Alerts | Open Access |
Exp Neurobiol 2013; 22(1): 1-10
Published online March 30, 2013
https://doi.org/10.5607/en.2013.22.1.1
© The Korean Society for Brain and Neural Sciences
Moussa B.H. Youdim1,2*
1Technion Rappaort Faculty of Medicine, Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases Haifa, Haifa 30196, Israel, 2Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
Correspondence to: *To whom correspondence should be addressed.
TEL: 972-4-8295-290, FAX: 972-4-8513-145, e-mail: Youdim@tx.technion.ac.il
Present anti-PD and -AD drugs have limited symptomatic activity and devoid of neuroprotective and neurorestorative property that is needed for disease modifying action. The complex pathology of PD and AD led us to develop several multi-target neuroprotective and neurorestorative drugs with several CNS targets with the ability for possible disease modifying activity. Employing the pharmacophore of our anti-parkinson drug rasagiline (Azilect, N-propagrgyl-1-R-aminoindan), we have developed a series of novel multi-functional neuroprotective drugs (A) [TV-3326 (N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate)], with both cholinesterase-butyrylesterase and brain selective monoamine-oxidase (MAO) A/B inhibitory activities and (B) the iron chelator-radical scavenging-brain selective monoamine oxidase (MAO) A/B inhibitor and M30 possessing the neuroprotective and neurorescuing propargyl moiety of rasagiline, as potential treatment of AD, DLB and PD with dementia. Another series of multi-target drugs (M30, HLA-20 series) which are brain permeable iron chelators and potent selective brain MAO inhibitors were also developed. These series of drugs have the ability of regulating and processing amyloid precursor protein (APP) since APP and alpha-synuclein are metaloproteins (iron-regulated proteins), with an iron responsive element 5"UTR mRNA similar to transferring and ferritin. Ladostigil inhibits brain acetyl and butyrylcholinesterase in rats after oral doses. After chronic but not acute treatment, it inhibits MAO-A and -B in the brain. Ladostigil acts like an anti-depressant in the forced swim test in rats, indicating a potential for anti-depressant activity. Ladostigil prevents the destruction of nigrostriatal neurons induced by infusion of neurotoxin MPTP in mice. The propargylamine moiety of ladostigil confers neuroprotective activity against cytotoxicity induced by ischemia and peroxynitrite in cultured neuronal cells. The multi-target iron chelator M30 has all the properties of ladostigil and similar neuroprotective activity to ladostigil, but is not a ChE inhibitor. M30 has a neurorestorative activity in post-lesion of nigrostriatal dopamine neurons in MPTP, lacatcystin and 6-hydroxydopamine animal models of PD. The neurorestorative activity is related to the ability of the drug to activate hypoxia inducing factor (HIF) which induces the production of such neurotrophins as brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF) and erythropoietin as well as glia-derived neurotrophic factor (GDNF). The unique multiple actions of ladostigil and M30 make the potentially useful drugs for the treatment of dementia with Parkinsonian-like symptoms and depression.
Keywords: brain selective MAO inhibition, multi-target drugs, neuroprotective and neurorestorative drugs, antidepressant activity