Articles

  • KSBNS 2024

Article

Original Article

Exp Neurobiol 2022; 31(2): 116-130

Published online April 30, 2022

https://doi.org/10.5607/en22007

© The Korean Society for Brain and Neural Sciences

Deletion of Phospholipase C β1 in the Thalamic Reticular Nucleus Induces Absence Seizures

Bomi Chang1,2,3, Junweon Byun1, Ko Keun Kim1, Seung Eun Lee2, Boyoung Lee1, Key-Sun Kim2, Hoon Ryu2, Hee-Sup Shin1* and Eunji Cheong3*

1Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, 2Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, 3Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea

Correspondence to: *To whom correspondence should be addressed.
Eunji Cheong, TEL: 82-2-2123-5885, FAX: 82-2-362-7265
e-mail: eunjicheong@yonsei.ac.kr
Hee-Sup Shin, TEL: 82-42-878-9155, FAX: 82-42-878-9151
e-mail: shin@ibs.re.kr

Received: February 24, 2022; Revised: March 22, 2022; Accepted: April 5, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Absence seizures are caused by abnormal synchronized oscillations in the thalamocortical (TC) circuit, which result in widespread spike-and-wave discharges (SWDs) on electroencephalography (EEG) as well as impairment of consciousness. Thalamic reticular nucleus (TRN) and TC neurons are known to interact dynamically to generate TC circuitry oscillations during SWDs. Clinical studies have suggested the association of Plcβ1 with early-onset epilepsy, including absence seizures. However, the brain regions and circuit mechanisms related to the generation of absence seizures with Plcβ1 deficiency are unknown. In this study, we found that loss of Plcβ1 in mice caused spontaneous complex-type seizures, including convulsive and absence seizures. Importantly, TRN-specific deletion of Plcβ1 led to the development of only spontaneous SWDs, and no other types of seizures were observed. Ex vivo slice patch recording demonstrated that the number of spikes, an intrinsic TRN neuronal property, was significantly reduced in both tonic and burst firing modes in the absence of Plcβ1 . We conclude that the loss of Plcβ1 in the TRN leads to decreased excitability and impairs normal inhibitory neuronal function, thereby disrupting feedforward inhibition of the TC circuitry, which is sufficient to cause hypersynchrony of the TC system and eventually leads to spontaneous absence seizures. Our study not only provides a novel mechanism for the induction of SWDs in Plcβ1 -deficient patients but also offers guidance for the development of diagnostic and therapeutic tools for absence epilepsy.

Graphical Abstract


Keywords: Thalamocortical neuronal system, Absence seizure, Spike and wave discharges, Thalamic reticular nucleus, Plcβ1